This paper deals with the computation of shakedown loads of engineering structures subjected to varying loads. In particular, we focus on thermal loading and the resulting heat conduction problem in combination with shakedown analysis. The analysis is based on the lower bound shakedown theorem by Melan. The calculation is carried out by use of an interior-point algorithm. Emphasis is placed on the presentation of theoretical derivations, whereas numerical aspects are out of scope. The methodology is illustrated by application to a simplified model of a tube sheet in heat exchangers.

References

References
1.
Weichert
,
D.
, and
Maier
,
G.
, 2000,
Inelastic Analysis of Structures Under Variable Repeated Loads
,
Kluwer Academic Publishers
,
Dordrecht
.
2.
Maier
,
G.
,
Pastor
,
I
,
Ponter
,
A.
, and
Weichert
,
D.
, 2003, “
Direct Methods of Limit and Shakedown Analysis
,”
Comprehensive Structural Integrity—Fracture of Materials from Nano to Macro
,
R.
de Borst
and
H.
Mang
, eds.,
Elsevier-Pergamon
,
Amsterdam
, Vol. 3: Numerical and Computational Methods, pp.
637
684
.
3.
Weichert
,
D.
, and
Ponter
,
A.
, 2009,
Limit States of Materials and Structures
,
Springer
,
Wien/New York
.
4.
Melan
,
E.
, 1938, “
Zur Plastizität des räumlichen Kon-tinuums
,”
Ing. Arch.
,
9
, pp.
116
126
.
5.
König
,
J.
, 1987,
Shakedown of Elastic-Plastic Structures
,
Elsevier
,
Amsterdam
.
6.
Gokhfeld
,
D.
, and
Cherniavsky
,
O.
, 1980,
Limit Analysis of Structures at Thermal Cycling
,
Sijthoff and Noordhoff
,
Alphen aan den Rijn
.
7.
Potra
,
K.
, and
Wright
,
S.
, 2000, “
Interior-Point Methods
,”
J. Comput. Appl. Math.
,
124
, pp.
281
302
.
8.
Forsgren
,
A.
,
Gill
,
P.
, and
Wright
,
M.
, 2002, “
Interior Methods for Nonlinear Optimization
,”
SIAM Review
,
44
(
4
), pp.
525
597
.
9.
Wright
,
M.
, 2004, “
The Interior-Point Revolution in Optimization: History, Recent Developments and Lasting Consequences
,”
Bull. Am. Math. Soc.
,
42
(
1
), pp.
39
56
.
10.
Andersen
,
E.
,
Jensen
,
B.
,
Jensen
,
J.
,
Sandvik
,
R.
, and
Worsoe
,
U.
, 2009, “
MOSEK Version 6
,” Technical Report TR–2009–3, MOSEK.
11.
Trillat
,
M.
, and
Pastor
,
J.
, 2005, “
Limit Analysis and Gurson’s Model
,”
Eur. J. Mech. A/Solids
,
24
, pp.
800
819
.
12.
Bisbos
,
C.
,
Makrodimopoulos
,
A.
, and
Pardalos
,
P.
, 2005, “
Second-Order Cone Programming Approaches to Static Shakedown Analysis in Steel Plasticity
,”
Optim. Methods Software
,
20
(
1
), pp.
25
52
.
13.
Makrodimopoulos
,
A.
, and
Martin
,
C.
, 2006, “
Lower Bound Limit Analysis of Cohesive-Frictional Materials Using Second-Order Cone Programming
,”
Int. J. Numer. Methods Eng.
,
66
(
4
), pp.
604
634
.
14.
Krabbenhøft
,
K.
,
Lyamin
,
A.
, and
Sloan
,
S.
, 2007, “
Formulation and Solution of Some Plasticity Problems as Conic Programs
,”
Int. J. Solids Struct.
,
44
, pp.
1533
1549
.
15.
Casciaro
,
R.
, and
Garcea
,
G.
, 2002, “
An Iterative Method for Shakedown Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
191
, pp.
5761
5792
.
16.
Zhang
,
X.
,
Liu
,
Y
,
Yanan
,
Z.
, and
Cen
,
Z.
, 2002, “
Lower Bound Limit Analysis by the Symmetric Galerkin Boundary Element Method and the Complex Method
,”
Comput. Methods Appl. Mech. Eng.
,
191
, pp.
1967
1982
.
17.
Krabbenhoft
,
K.
, and
Damkilde
,
L.
, 2003, “
A General Nonlinear Optimization Algorithm for Lower Bound Limit Analysis
,”
Int. J. Numer. Methods Eng.
,
56
, pp.
165
184
.
18.
Krabbenhøft
,
K.
,
Lyamin
,
A.
,
Sloan
,
S.
, and
Wriggers
,
P.
, 2007, “
An Interior-Point Algorithm for Elastoplasticity
,”
Int. J. Numer. Methods Eng.
,
69
, pp.
592
626
.
19.
Vu
,
D.
, and
Staat
,
M
, 2007, “
Analysis of Pressure Equipment by Application of the Primal-Dual Theory of Shakedown
,”
Commun. Numer. Methods Eng.
,
23
(
3
), pp.
213
225
.
20.
Akoa
,
K
,
Hachemi
,
A.
,
An
,
L.
,
Mouhtamid
,
S.
, and
Tao
,
P.
, 2007, “
Application of Lower Bound Direct Method to Engineering Structures
,”
J. Global Optim.
,
37
(
4
), pp.
609
630
.
21.
Pastor
,
K
,
Loute
,
E.
,
Pastor
,
J.
, and
Trillat
,
M
, 2009, “
Mixed Method and Convex Optimization for Limit Analysis of Homogeneous Gurson Materials: A Kinematic Approach
,”
Eur. J. Mech. A/Solids
,
28
, pp.
25
35
.
22.
Simon
,
J.-W.
, and
Weichert
,
D.
, 2010, “
An Improved Interior-Point Algorithm for Large-Scale Shakedown Analysis
,”
PAMM—Proc. Appl. Math. Mech.
,
10
, pp.
223
224
.
23.
Simon
,
J.-W.
, and
Weichert
,
D.
, 2010, “
Interior-Point Method for the Computation of Shakedown Loads for Engineering Systems
,”
ASME Conference Proceedings ESDA2010
, Vol.
4
, pp.
253
262
.
24.
Hachemi
,
A.
,
An
,
L.
,
Mouhtamid
,
S.
, and
Tao
,
P.
, 2004, “
Large-Scale Nonlinear Programming and Lower Bound Direct Method in Engineering Applications
,”
Modelling, Computation and Optimization in Information Systems and Management Sciences
,
L.
An
and
P.
Tao
, eds.,
Hermes Science Publishing
,
London
, pp.
299
310
.
25.
Wächter
,
A.
, and
Biegler
,
L.
, 2005, “
Line-Search Filter Methods for Nonlinear Programming: Motivation and Global Convergence
,”
SIAM J Optim
,
16
(
1
), pp.
1
31
.
26.
Wächter
,
A.
, and
Biegler
,
L.
, 2006, “
On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming
,”
Math Program
,
106
(
1
), pp.
25
57
.
You do not currently have access to this content.