Probabilistic fatigue models are required to account conveniently for the several sources of uncertainty arising in the prediction procedures, such as the scatter in material behavior. In this paper, a recently proposed stress-based probabilistic model is assessed using fatigue data available for the P355NL1 steel (a pressure vessel steel). The referred probabilistic model is a log-Gumbel regression model, able to predict the probabilistic Wöhler field (P–S–N field), taking into account the mean stress (or stress R-ratio) effects. The parameters of the probabilistic model are identified using stress-life data derived for the P355NL1 steel, from smooth specimens, for three distinct stress R-ratios, namely R = −1, R = −0.5, and R = 0. The model requires a minimum of two test series with distinct stress R-ratios. Since data from three test series is available, extrapolations are performed to test the adequacy of the model to make extrapolations for stress R-ratios other than those used in the model parameters assessment. Finally, the probabilistic model is used to model the fatigue behavior of a notched plate made of P355NL1 steel. In particular, the P–S–N field of the plate is modeled and compared with available experimental data. Cyclic elastoplastic analysis of the plate is performed since plasticity at the notch root is developed. The probabilistic model correlated appropriately the stress-life data available for the P355NL1 steel and was able to perform extrapolations for stress ratios other than those used in the model identification. The P–S–N field identified using data from smooth specimens led to consistent predictions of the P–S–N field for a notched plate, demonstrating the adequacy of the probabilistic model also to predict the probabilistic Wöhler field for notched components.

References

1.
Spindel
,
J. E.
, and
Haibach
,
E.
, 1981, “
Some Considerations in the Statistical Determination of the Shape of S-N Curves
,”
Statistical Analysis of Fatigue Data
, ASTM STP No. 744,
R. E.
Little
and
J. C.
Ekvall
, eds.,
Philadelphia
,
PA
, pp.
89
113
.
2.
Pascual
,
F. G.
, and
Meeker
,
W. Q.
, 1999, “
Estimating Fatigue Curves With the Random Fatigue-Limit Model
,”
Technometrics
,
41
, pp.
277
302
.
3.
Kohout
,
J.
, 1999, “
A New Function Describing Fatigue Crack Growth Curves
,”
Int. J. Fatigue
,
21
, pp.
813
821
.
4.
Kohout
,
J.
, and
Vechet
,
S.
, 2001, “
A New Function for Fatigue Curves Characterization and Its Multiple Merits
,”
Int. J. Fatigue
,
23
, pp.
175
183
.
5.
Castillo
,
E.
, and
Fernández-Canteli
,
A.
, 2009,
A Unified Statistical Methodology for Modeling Fatigue Damage
,
Springer
,
New York.
6.
Morrow
,
J. D.
, 1965, “
Cyclic Plastic Strain Energy and Fatigue of Metals
,”
International Friction, Damping, and Cyclic Plasticity
, ASTM, STP
378
, pp.
45
87
.
7.
Smith
,
K. N.
,
Watson
,
P.
, and
Topper
,
T. H.
, 1970, “
A Stress-Strain Function for the Fatigue of Metals
,”
J. Mater.
,
5
(
4
), pp.
767
778
.
8.
Castillo
,
E.
, and
Fernández-Canteli
,
A.
, 2001, “
A General Regression Model for Lifetime Evaluation and prediction
,”
Int. J. Fract.
,
107
, pp.
117
137
.
9.
Castillo
,
E.
,
López-Aenlle
,
M.
,
Ramos
,
A.
,
Fernández-Canteli
,
A.
,
Kieselbach
,
R.
, and
Esslinger
,
V.
, 2006, “
Specimen Length Effect on Parameter Estimation in Modelling Fatigue Strength by Weibull Distribution
,”
Int. J. Fatigue
,
28
, pp.
1047
1058
.
10.
Castillo
,
E.
,
Fernández-Canteli
,
A.
, and
Ruiz-Ripoll
,
M. L.
, 2008, “
A General Model for Fatigue Damage Due to Any Stress History
,”
Int. J. Fatigue
,
30
, pp.
150
164
.
11.
Bolotin
,
V. V.
, 1998,
Mechanics of Fatigue
,
CRC Press
,
Boca Raton
, 1998.
12.
Castillo
,
E.
,
Fernández-Canteli
,
A.
,
Hadi
,
A. S.
, and
López-Aenlle
,
M.
, 2007, “
A Fatigue Model With Local Sensitivity Analysis
,”
Fatigue Fract. Eng. Mater. Struct.
,
30
, pp.
149
168
.
13.
Castillo
,
E.
, and
Fernández-Canteli
,
A.
, 2006, “
A Parametric Lifetime Model for the Prediction of High Cycle Fatigue Based on Stress Level and Amplitude
,”
Fatigue Fract. Eng. Mater. Struct.
,
29
, pp.
1031
1038
.
14.
Castillo
,
E.
,
Fernández-Canteli
,
A.
,
Koller
,
R.
,
Ruiz-Ripoll
,
M. L.
, and
García
,
A.
, 2007, “
A Statistical Fatigue Model Covering the Tension and Compression Wöhler Fields
,”
Probab. Eng. Mech.
,
24
, pp.
199
209
.
15.
Koller
,
R.
,
Ruiz-Ripoll
,
M. L.
,
García
,
A.
,
Fernández – Canteli
,
A.
, and
Castillo
,
E.
, 2007, “
Experimental Validation of a Statistical Model for the Wöhler Field Corresponding to Any Stress Level and Amplitude
,”
Int. J. Fatigue
,
31
, pp.
231
241
.
16.
Castillo
,
E.
, and
Hadi
,
A. S.
, 1995, “
Modelling Lifetime Data With Application to Fatigue Models
,”
J. Am. Stat. Assoc.
,
90
, pp.
1041
1054
.
17.
De Jesus
,
A. M. P.
,
Ribeiro
,
A. S.
, and
Fernandes
,
A. A.
, 2005, “
Finite Element Modeling of Fatigue Damage Using a Continuum Damage Mechanics Approach
,”
J. Pressure Vessel Technol.
,
127
, pp.
157
164
.
18.
Pereira
,
H. F. S. G.
,
De Jesus
,
A. M. P.
,
Ribeiro
,
A. S.
, and
Fernandes
,
A. A.
, 2009, “
Fatigue Damage Behavior of a Structural Component Made of P355NL1 Steel Under Block Loading
,”
J. Pressure Vessel Technol.
,
131
, p.
021407
.
19.
Pereira
,
H. F. S. G.
,
DuQuesnay
,
D. L.
,
De Jesus
,
A. M. P.
, and
Silva
,
A. L. L.
, 2009, “
Analysis of Variable Amplitude Fatigue Data of the P355NL1 Steel Using the Effective Strain Damage Model
,”
J. Pressure Vessel Technol.
,
131
, p.
051402
.
20.
Seeger
,
T.
, and
Heuler
,
P.
, 1980, “
Generalised Application of Neuber’s Rule
,”
J. Test. Eval.
,
8
(
4
), pp.
199
204
.
21.
Neuber
,
H.
, 1961, “
Theory of Stress Concentration for Shear-Strained Prismatic Bodies With Arbitrary Nonlinear Stress-Strain Law
,”
Trans. ASME J. Appl. Mech.
,
28
, pp.
544
550
.
22.
Ramberg
,
W.
, and
Osgood
,
W. R.
, 1943, “
Description of Stress-Strain Curves by Three Parameters
,” NACA Technical Note No. 902.
23.
Pereira
,
H. F. S. G.
,
de Jesus
,
A. M. P.
,
Fernandes
,
A. A.
, and
Ribeiro
,
A. S.
, 2008, “
Analysis of Fatigue Damage under Block Loading in a Low Carbon Steel
,”
Strain
,
44
, pp.
429
439
.
24.
Pereira
,
H. F. S. G.
,
De Jesus
,
A. M. P.
,
Ribeiro
,
A. S.
, and
Fernandes
,
A. A.
, 2009, “
Cyclic and Fatigue Behavior of the P355NL1 Steel Under Block Loading
,”
J. Pressure Vessel Technol
.
131
, p.
021210
.
25.
de Jesus
,
A. M. P.
, 2004, “
Validation of Procedures for Fatigue Assessment of Pressure Vessels
,”
Ph.D. thesis
,
UTAD
,
Portugal (in Portuguese
).
26.
Peterson
,
R. E.
, 1959, “
Notch Sensitivity
,”
Metal Fatigue
,
G.
Sines
and
J. L.
Waisman
eds.,
McGraw-Hill Book Company, Inc.
,
New York
, pp.
293
306
.
You do not currently have access to this content.