In this study, the limit load, shakedown, and ratchet limit of a defective pipeline subjected to constant internal pressure and a cyclic thermal gradient are analyzed. Ratchet limit and maximum plastic strain range are solved by employing the new linear matching method (LMM) for the direct evaluation of the ratchet limit. Shakedown and ratchet limit interaction diagrams of the defective pipeline identifying the regions of shakedown, reverse plasticity, ratcheting, and plastic collapse mechanism are presented, and parametric studies involving different types and dimensions of part-through slot in the defective pipeline are investigated. The maximum plastic strain range over the steady cycle with different cyclic loading combinations is evaluated for a low cycle fatigue assessment. The location of the initiation of a fatigue crack for the defective pipeline with different slot type is determined. The proposed linear matching method provides a general-purpose technique for the evaluation of these key design limits and the plastic strain range for the low cycle fatigue assessment. The results for the defective pipeline shown in the paper confirm the applicability of this procedure to complex 3-D structures.

References

References
1.
Chen
,
H. F.
,
Liu
,
Y. H.
,
Cen
,
Z. Z.
, and
Xu
,
B. Y.
, 1998, “
Numerical Analysis of Limit Load and Reference Stress of Defective Pipelines Under Multi-Loading Systems
,”
Int. J. Pressure Vessels Piping
,
75
, pp.
105
114
.
2.
Chen
,
H. F.
, and
Shu
,
D. W.
, 2000, “
Lower and Upper Bound Limit Analyses for Pipeline With Multi-Slots of Various Configurations
,”
Int. J. Pressure Vessels Piping
,
77
, pp.
17
25
.
3.
Melan
,
E.
, 1936, “
Theorie Statisch Unbestimmter Systeme aus Ideal-Plastischem Bastoff. Sitzungsberichte der Akademie der Wissenschaft
,”
Wien, Abtiia
,
145
, pp.
195
218
.
4.
Staat
,
M.
, and
Heitzer
,
M.
, 2001, “
LISA a European Project for FEM-based Limit and Shakedown Analysis
,”
Nucl. Eng. Des.
,
206
, pp.
151
166
.
5.
Vu
,
D. K.
,
Yan
,
A. M.
, and
Nguyen
,
D.
, 2004, “
A Primal–Dual Algorithm for Shakedown Analysis of Structures
,”
Comput. Methods Appl. Mech. Eng.
,
193
, pp.
4663
4674
.
6.
Seshadri
,
R.
, 1995, “
Inelastic Evaluation of Mechanical and Structural Components Using the Generalized Local Stress Strain Method of Analysis
,”
Nucl. Eng. Des.
,
153
, pp.
287
303
.
7.
Mackenzie
,
D.
,
Boyle
,
J. T.
, and
Hamilton
,
R.
, 2000, “
The Elastic Compensation Method for Limit and Shakedown Analysis: A Review
,”
J. Strain Anal. Eng. Des.
,
35
, pp.
171
188
.
8.
Ponter
,
A. R. S.
, and
Chen
,
H. F.
, 2001, “
A Minimum Theorem for Cyclic Load in Excess of Shakedown, With Application to the Evaluation of a Ratchet Limit
,”
Eur. J. Mech. A/Solids
,
20
, pp.
539
553
.
9.
Chen
,
H. F.
, and
Ponter
,
A. R. S.
, 2001, “
A Method for the Evaluation of a Ratchet Limit and The Amplitude of Plastic Strain for Bodies Subjected to Cyclic Loading
,”
Eur. J. Mech. A/Solids
,
20
, pp.
555
571
.
10.
ABAQUS
, 2007, User’s manual, version 6.7, Dessault Systems Simulia Corp., 2007, Providence, RI, USA
11.
Chen
,
H. F.
, 2010, “
Lower and Upper Bound Shakedown Analysis of Structures With Temperature-Dependent Yield Stress
,”
ASME J. Pressure Vessel Technol.
,
132
, pp.
1
8
.
12.
Chen
,
H. F.
, 2010, “
A Direct Method on the Evaluation of Ratchet Limit
,”
ASME J. Pressure Vessel Technol.
,
132
,
041202
.
13.
Chen
,
H. F.
, and
Ponter
,
A. R. S.
, 2006, “
Linear Matching Method on the Evaluation of Plastic and Creep Behaviours for Bodies Subjected to Cyclic Thermal and Mechanical Loading
,”
Int. J. Numer. Methods Eng.
,
68
, pp.
13
32
.
14.
Koiter
,
W. T.
, 1960,
“General Theorems for Elastic Plastic Solids,”
Progress in Solid Mechanics
,
J. N.
Sneddon
and
R.
Hill
, eds.,
North Holland
,
Amsterdam
, Vol.
1
, pp.
167
221
.
15.
Chen
,
H. F.
, and
Ponter
,
A. R. S.
, 2001, “
Shakedown and Limit Analyses for 3-D Structures Using the Linear Matching Method
,”
Int. J. Pressure Vessels Piping
,
78
, pp.
443
451
.
You do not currently have access to this content.