This paper used finite element method (FEM) to predict the residual stresses in repair weld of a stainless steel clad plate. The effects of clad metal thickness and base metal thickness on residual stresses have been investigated. The results show that large residual stresses have been generated in weld metal and heat affected zone (HAZ). The clad metal and base metal thickness have a great effect on residual stresses. With clad metal thickness increase, the deformation and plastic strain are increased to relax some residual stress, which leads to a decrease in residual stress. The repair structure has an angular deformation for the shrinkage of weld metal. The strength of base metal is great larger than that of clad metal, and therefore, the base metal has a constraint on the shrinkage of clad metal. As the base metal thickness increase, this constraint function is enhanced, which leads to an increase in residual stress, which provides a reference for the repair welding of stainless steel clad plate.

References

References
1.
Bouchard
,
P. J.
, 2008, “
Code Characterisation of Weld Residual Stress Levels and the Problem of Innate Scatter
,”
Int. J. Pressure Vessels Piping
,
85
(
3
), pp.
152
165
.
2.
Dong
,
P.
, and
Brust
,
F. W.
, 2000, “
Welding Residual Stresses and Effects on Fracture in Pressure Vessel and Piping Components: A Millennium Review and Beyond
,”
Trans. ASME J. Pressure Vessel Technol.
,
122
(
3
), pp.
329
338
.
3.
Leggatt
,
R. H.
, 2008, “
Residual Stresses in Welded Structures
,”
Int. J. Pressure Vessels Piping
,
85
(
3
), pp.
144
151
.
4.
Liljedahl
,
C. D. M.
,
Brouard
,
J.
,
Zanellato
,
O.
,
Lin
,
J.
,
Tan
,
M. L.
,
Ganguly
,
S.
,
Irving
,
P. E.
,
Fitzpatrick
,
M. E.
,
Zhang
,
X.
, and
Edwards
,
L.
, 2009, “
Weld Residual Stress Effects on Fatigue Crack Growth Behaviour of Aluminium Alloy 2024-T351
,”
Int. J. Fatigue
,
31
(
6
), pp.
1081
1088
.
5.
Wen-Chun
,
J.
,
Jian-Ming
,
G.
,
Hu
,
C.
, and
Tu
,
S. T.
, 2008, “
Finite Element Analysis of the Effect of Brazed Residual Stress on Creep for Stainless Steel Plate-Fin Structure
,”
Trans. ASME J. Pressure Vessel Technol.
,
130
(
4
), p.
0412031
.
6.
Turski
,
M.
,
Bouchard
,
P. J.
,
Steuwer
,
A.
,
Withers
,
P. J.
, 2008, “
Residual Stress Driven Creep Cracking in AISI Type 316 Stainless Steel
,”
Acta Mater.
,
56
(
14
), pp.
3598
3612
.
7.
Liljedahl
,
C. D. M.
,
Zanellato
,
O.
,
Fitzpatrick
,
M. E.
,
Lin
,
J.
, and
Edwards
,
L.
, 2010, “
The Effect of Weld Residual Stresses and Their Re-Distribution With Crack Growth During Fatigue Under Constant Amplitude Loading
,”
Int. J. Fatigue
,
32
(
4
), pp.
735
743
.
8.
Sonsino
,
C. M.
, 2009, “
Effect of Residual Stresses on the Fatigue Behaviour of Welded Joints Depending on Loading Conditions and Weld Geometry
,”
Int. J. Fatigue
,
31
(
1
), pp.
88
101
.
9.
Li
,
G. F.
,
Charles
,
E. A.
, and
Congleton
,
J.
, 2001, “
Effect of Post Weld Heat Treatment on Stress Corrosion Cracking of a Low Alloy Steel to Stainless Steel Transition Weld
,”
Corros. Sci.
,
43
(
10
), pp.
1963
1983
.
10.
Van
Boven
,
G.
,
Chen
,
W.
, and
Rogge
,
R.
, 2007, “
The Role of Residual Stress in Neutral pH Stress Corrosion Cracking of Pipeline Steels. Part I: Pitting and Cracking Occurrence
,”
Acta Mater.
,
55
(
1
), pp.
29
42
.
11.
Bouchard
,
P. J.
, 2005, “
Special Issue on Residual Stresses at Repair Welds
,”
Int. J. Pressure Vessels Piping
,
82
(
4
). p.
243
243
.
12.
Mochizuki
,
M.
, 2007, “
Control of Welding Residual Stress for Ensuring Integrity Against Fatigue and Stress–Corrosion Cracking
,”
Nucl. Eng. Des.
,
237
(
2
), pp.
107
123
.
13.
Dong
,
P.
, Zhang, J, and
Bouchard
,
P. J.
, 2002, “
Effects of Repair Weld Length on Residual Stress Distribution
,”
Trans. ASME J. Pressure Vessel Technol.
,
124
(
1
),
74
80
.
14.
Aloraier
,
A.
,
Al-Mazrouee
,
A.
,
Price
,
J. W. H.
, and
Shehata
,
T.
, 2010, “
Weld Repair Practices Without Post Weld Heat Treatment for Ferritic Alloys and Their Consequences on Residual Stresses: A Review
,”
Int. Journal of Pressure Vessels Piping
,
87
(
4
), pp.
127
133
.
15.
Bouchard
,
P. J.
,
George
,
D.
,
Santisteban
,
J. R.
,
Bruno
,
G.
,
Dutta
,
M.
,
Edwards
,
L.
,
Kingston
,
E.
, and
Smith
,
D. J.
, 2005, “
Measurement of the Residual Stresses in a Stainless Steel Pipe Girth Weld Containing Long and Short Repairs
,”
Int. J. Pressure Vessels Piping
,
82
(
4
), pp.
299
310
.
16.
Mirzaee-Sisan
,
A.
,
Fookes
,
A. J.
,
Truman
,
C. E.
,
Smith
,
D. J.
,
Brown
,
T. B.
, and
Dauda
,
T. A.
, 2007, “
Residual Stress Measurement in a Repair Welded Header in the As-Welded Condition and After Advanced Post Weld Treatment
,”
Int. J. Pressure Vessels Piping
,
84
(
5
), pp.
265
273
.
17.
Elcoate
,
C. D.
,
Dennis
,
R. J.
,
Bouchard
,
P. J.
, and
Smith
,
M. C.
, 2005, “
Three Dimensional Multi-Pass Repair Weld Simulations
,”
Int. J. Pressure Vessels Piping
,
82
(
4
), pp.
244
257
.
18.
Kim
,
K. S.
,
Lee
,
H. J.
,
Lee
,
B. S.
,
Jung
,
I. C.
, and
Park
,
K. S.
, 2009, “
Residual Stress Analysis of an Overlay Weld and a Repair Weld on the Dissimilar Butt Weld
,”
Nucl. Eng. Des.
,
239
(
12
), pp.
2771
2777
.
19.
Brown
,
T. B.
,
Dauda
,
T. A.
,
Truman
,
C. E.
,
Smith
,
D. J.
,
Memhard
,
D.
, and
Pfeiffer
W.
, 2006, “
Predictions and Measurements of Residual Stress in Repair Welds in Plates
,”
Int. J. Pressure Vessels Piping
,
83
(
11–12
), pp.
809
818
.
20.
Soanes
,
T. P. T.
,
Bell
,
W.
, and
Vibert
,
A. J.
, 2005, “
Optimising Residual Stresses at a Repair in a Steam Header to Tubeplate Weld
,”
Int. J. Pressure Vessels Piping
,
82
(
4
), pp.
311
318
.
21.
Jiang
,
W.
,
Gong
,
J.
,
Tu
,
S.
-T., and
Chen
,
H.
, 2008, “
Effect of Geometric Conditions on Residual Stress of Brazed Stainless Steel Plate-Fin Structure
,”
Nucl. Eng. Des.
,
238
(
7
), pp.
1497
1502
.
22.
Akbari
,
D.
, and
Sattari-Far
,
I.
, 2009, “
Effect of the Welding Heat Input on Residual Stresses in Butt-Welds of Dissimilar Pipe Joints
,”
Int. J. Pressure Vessels Piping
,
86
(
11
), pp.
769
776
.
23.
Sattari-Far
,
I.
, and
Farahani
,
M. R.
, 2009, “
Effect of the Weld Groove Shape and Pass Number on Residual Stresses in Butt-Welded Pipes
,”
Int. J. Pressure Vessels Piping
,
86
(
11
), pp.
723
731
.
24.
Rudland
,
D.
,
Chen
,
Y.
,
Zhang
,
T.
,
Wilkowski
,
G.
,
Broussard
,
J.
, and
White
,
G.
, 2008, “
Comparison of Welding Residual Stress Solutions for Control Rod Drive Mechanism Nozzles
,” American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication), Vol.
6
,
2007 Proceedings of the ASME Pressure Vessels and Piping Conference—Materials and Fabrication
, pp.
997
1011
.
25.
Zhang
,
T.
,
Wilkowski
,
G.
,
Rudland
,
D.
,
Brust
,
F.
,
Mehta
,
H. S.
, and
Sommerville
,
D. V.
, 2008, “
Weld-Overlay Analyses—An Investigation of the Effect of Weld Sequencing
,”
ASME Pressure Vessels and Piping Division Conference
, July 27–31, 2008, Chicago, IL
26.
Rudland
,
D.
,
Csontos
,
A.
,
Zhang
,
T.
, and
Wilkowski
,
G.
, 2010, “
Welding Residual Stress Solutions for Dissimilar Metal Surge Line Nozzle Welds
,”
J. Pressure Vessel Technol.
,
132
, p.
0212081
.
27.
Dong
,
P.
,
Hong
,
J. K.
, and
Bouchard
,
P. J.
, 2005, “
Analysis of Residual Stresses at Weld Repairs
,”
Int. J. Pressure Vessels Piping
,
82
(
4
), pp.
258
269
.
28.
Rybicki
,
E. F.
,
Shadley
,
J. R.
,
Sandhu
,
A. S.
, and
Stonesifer
,
R. B.
, 1988, “
Experimental and Computational Residual Stress Evaluation of a Weld Clad Plate and Machined Test Specimens
,”
Trans. ASME J. Eng. Mater. Technol.
,
110
(
4
), pp.
297
304
.
29.
Hieronymus
,
H.
,
Bruce
,
B.
,
Didier
,
L.
,
Carsten
,
O.
,
Chris
,
T.
, and
Wimpory Robert
,
C.
, 2005, “
Empower—Repair Welds and Residual Stresses in Clad Plates
,”
Proceedings of the ASME PVP Conference
,
6
, pp.
361
369
.
30.
Jiang
,
W.
,
Gong
,
J. M.
,
Tu
,
S. T.
, and
Li
,
G. C.
, 2010, “
Numerical Simulation to Study the Effect of Repair Width on Residual Stresses of a Stainless Steel Clad Plate
,”
Int. J. Pressure Vessels Piping
,
87
(
8
), pp.
457
463
.
31.
Zhang
,
T.
,
Brust
,
F.
,
Wilkowski
,
G.
,
Rudland
,
D.
, and
Csontos
,
A.
, 2009, “
Welding Residual Stress and Multiple Flaw Evaluation for Reactor
,” Pressure Vessel Head Replacement Welds With Alloy,
52
,
2009 ASME Pressure Vessels and Piping Division Conference
, July 26–30, Prague, Czech Republic.
32.
Jiang
,
W.
,
Gong
,
J.
,
Chen
,
H.
, and
Tu
,
S. T.
, 2008, “
The Effect of Filler Metal Thickness on Residual Stress and Creep for Stainless-Steel Plate-Fin Structure
,”
Int. J. Pressure Vessels Piping
,
85
(
8
), pp.
569
574
.
33.
Wen-chun
,
J.
,
Jian-ming
,
G.
, and
Jian-qun
,
T.
, 2006, “
Numerical Simulation of Hydrogen Diffusion Under Welding Residual Stress
,”
Trans. Chin. Weld. Inst.
,
27
(
11
), pp.
57
60
.
34.
Teng
,
T.-L.
,
Chang
,
P.-H.
, and
Tseng
,
W.-C.
, 2003, “
Effect of Welding Sequences on Residual Stresses
,”
Comput. Struct.
,
81
(
5
), pp.
273
286
.
35.
Chang
,
P.-H.
, and
Teng
,
T.-L.
, 2004, “
Numerical and Experimental Investigations on the Residual Stresses of the Butt-Welded Joints
,”
Comput. Mater. Sci.
,
29
(
4
), pp.
511
522
.
36.
Chen
,
X. L.
,
Yang
,
Z.
,
Brust
,
F. W.
, 2005, “
Modeling Distortion and Residual Stress During Welding
,”
Processes and Mechanisms of Welding Residual Stress and Distortion
, pp.
225
263
, Woodhead Publishing, Cambridge, Chap. 7.
37.
Brust
,
F. W.
, and
Kim
,
D.
, 2005, “
Mitigating Welding Residual Stress and Distortion
,”
Processes and Mechanisms of Welding Residual Stress and Distortion
, pp.
264
294
, Woodhead Publishing, Cambridge, Chap. 8.
You do not currently have access to this content.