When multiple cracks approach one another, the stress intensity factor and J-integral value change due to the interaction of the stress field. Since the changes in these parameters are not always conservative in structural reliability evaluations, the interaction between multiple cracks should be taken into account. Section XI of the ASME Boiler and Pressure Vessel Code provides a flaw characterization rule for interacting multiple cracks. In Section XI, adjacent cracks are replaced with a coalesced single crack when the distance between the cracks is less than half of the crack depth. However, the criterion for the offset distance is given as an absolute value, although the magnitude of the interaction depends on the crack size. In the current study, an alternative criterion for the offset distance was examined. Linear-elastic and elastic–plastic analyses were performed for interacting semicircular and semi-elliptical surface cracks by the finite element method under a tensile or bending load. The change in the stress intensity factors and J-integral values due to the relative spacing of cracks was investigated. Based on the relationship between the magnitude of the interaction and the relative position of the cracks, the allowable ctriterion for the offset distance was discussed.

References

References
1.
Wang
,
Y. Z.
,
Atkinson
,
J. D.
,
Akid
,
R.
, and
Parkins
,
R. N.
, 1996, “
Crack Interaction, Coalescence and Mixed Mode Fracture Mechanics
,”
Fatigue Fract. Eng. Mater. Struct.
,
19
, pp.
427
439
.
2.
Kamaya
,
M.
, 2005, “
Influence of the Interaction on Stress Intensity Factor of Semi-Elliptical Surface Cracks
,” ASME PVP2005-71352.
3.
Kamaya
,
M.
, and
Totsuka
,
N.
, 2002, “
Influence of Interaction Between Multiple Cracks on Stress Corrosion Crack Propagation
,”
Corros. Sci.
,
44
, pp.
2333
2352
.
4.
Ishida
,
M.
, 1970, “
Analysis of Stress Intensity Factors for Plates Containing Random Array of Cracks
,”
Bull. JSME
,
13
, pp.
635
642
.
5.
Laures
,
J.
, and
Kachanov
,
M.
, 1991, “
Three-Dimensional Interaction of a Crack Front With Arrays of Penny-Shaped Microcracks
,”
Int. J. Fract.
,
48
, pp.
255
279
.
6.
Kishimoto
,
K.
,
Soboyejo
,
W. O.
,
Smith
,
R. A.
, and
Knott
,
J. F.
, 1989, “
A Numerical Investigation of the Interaction and Coalescence of Twin Coplanar Semi-Elliptical Fatigue Cracks
,”
Int. J. Fatigue
,
11
, pp.
91
96
.
7.
Moussa
,
W. A.
,
Bell
,
R.
, and
Tan
,
C. L.
, 2002, “
Investigating the Effect of Crack Shape on the Interaction Behavior of Noncoplanar Surface Cracks Using Finite Element Analysis
,”
ASME J. Pressure Vessel Technol.
,
124
, pp.
234
238
.
8.
Stonesifer
,
R. B.
,
Brust
,
F. W.
, and
Leis
,
B. N.
, 1993, “
Mixed-Mode Stress Intensity Factors for Interacting Semi-Elliptical Surface Cracks in a Plate
,”
Eng. Fract. Mech.
,
45
, pp.
357
380
.
9.
Noda
,
N. A.
,
Kobayashi
,
K.
, and
Oohashi
,
T.
, 2001, “
Variation of the Stress Intensity Factor Along the Crack Front of Interacting Semi-Elliptical Surface Crack
,”
Arch. Appl. Mech.
,
71
, pp.
43
52
.
10.
Leek
,
T. H.
, and
Howard
,
I. C.
, 1996, “
An Examination of Methods of Assessing Interacting Surface Cracks by Comparison With Experimental Data
,”
Int. J. Pressure Vessels Piping
,
68
, pp.
181
201
.
11.
ASME, 2007, Rules for In-Service Inspection of Nuclear Power Plant Components—ASME Boiler and Pressure Vessel Code, Section XI.
12.
JSME, 2004, Codes for Nuclear Power Generation Facilities: Rules of Fitness-for-Service for Nuclear Power Plants.
13.
Frise
,
P. R.
, and
Bell
,
R.
, 1992, “
Modeling Fatigue Crack Growth and Coalescence in Notches
,”
Int. J. Pressure Vessels Piping
,
51
, pp.
107
126
.
14.
Soboyejo
,
W. O.
, and
Knott
,
J. F.
, 1991, “
The Propagation of Non-Coplanar Semi-Elliptical Fatigue Cracks
,”
Fatigue Fract. Eng. Mater. Struct.
,
14
, pp.
37
49
.
15.
Soboyejo
,
W. O.
,
Knott
,
J. F.
,
Walsh
,
M. J.
, and
Cropper
,
K. R.
, 1990, “
Fatigue Crack Propagation of Coplanar Semi-Elliptical Cracks in Pure Bending
,”
Eng. Fract. Mech.
,
37
, pp.
323
340
.
16.
Kamaya
,
M.
, 2008, “
Influence of the Interaction on Stress Intensity Factor of Semi-Elliptical Surface Cracks
,”
J. Pressure Vessel Technol.
,
130
, p.
011406
.
17.
Frise
,
P. R.
, and
Bell
,
R.
, 1992, “
Fatigue Crack Growth and Coalescence at Notches
,”
Int. J. Fatigue
,
14
, pp.
51
56
.
18.
Grandt
,
A. F.
, Jr.
,
Thakker
,
A. B.
, and
Tritsch
,
D. E.
, 1986, “
An Experimental and Numerical Investigation of the Growth and Coalescence of Multiple Fatigue Cracks at Notches
,”
Fracture Mechanics: Seventeenth Volume ASTM STP 905
, pp.
239
252
.
19.
Iida
,
K.
,
Ando
,
K.
, and
Hirata
,
T.
, 1980, “
An Evaluation Technique for Fatigue Life of Multiple Surface Cracks (Part 1: A Problem of Multiple Series Surface Cracks)
,”
J. Mar. Sci. Technol.
,
148
, pp.
284
293
.
20.
Ando
,
K.
,
Hirata
,
T.
, and
Iida
,
K.
, 1983, “
An Evaluation Technique for Fatigue Life of Multiple Surface Cracks (Part 2: A Problem of Multiple Parallel Surface Cracks)
,”
J. Mar. Sci. Technol.
,
153
, pp.
352
363
.
21.
Shibata
,
K.
,
Yokoyama
,
N.
,
Ohba
,
T.
,
Kawamura
,
T.
, and
Miyazono
,
S.
, 1985, “
Growth Evaluation of Fatigue Cracks From Multiple Surface Flaws
,”
J. At. Energy Soc. Jpn.
,
27
, pp.
250
262
.
22.
Kamaya
,
M.
, 2003, “
A Crack Growth Evaluation Method for Interacting Multiple Cracks
,”
JSME Int. J.
,
46A
, pp.
15
23
.
23.
Kamaya
,
M.
, 2008, “
Growth Evaluation of Multiple Interacting Surface Cracks. Part I: Experiments and Simulation of Coalesced Crack
,”
Eng. Fract. Mech.
,
75
, pp.
1336
1349
.
24.
Hasegawa
,
K.
,
Shiratori
,
M.
,
Miyoshi
,
T.
, and
Seki
,
N.
, 2002, “
Comparison of Stress Intensity Factors of Two Flaws and a Combined Flaw Due to Combination Rules
,”
ASME 2002 Pressure Vessels and Piping Conference (PVP2002)
, Vol.
439
, pp.
307
312
.
25.
Kamaya
,
M.
, and
Kitamura
,
T.
, 2001, “
Stress Intensity Factors of Interacting Parallel Surface Cracks
,”
Trans. Jpn. Soc. Mech. Eng.
,
68
, pp.
1112
1119
.
26.
Kamaya
,
M.
, 2008, “
Growth Evaluation of Multiple Interacting Surface Cracks. Part II: Growth Evaluation of Parallel Cracks
,”
Eng. Fract. Mech.
,
75
, pp.
1350
1366
.
27.
Noda
,
N.
, and
Miyoshi
,
S.
, 1995, “
Analysis of Variation of Stress Intensity Factor Along Crack Front of Semi-Elliptical Surface Crack Using Singular Integral Equation Method
,”
Trans. Jpn. Soc. Mech. Eng.
,
62
, pp.
1232
1240
.
28.
Newman
,
J. C.
, Jr.
, and
Raju
,
I. S.
, 1981, “
An Empirical Stress-Intensity Factor Equation for the Surface Crack
,”
Eng. Fract. Mech.
,
15
, pp.
185
192
.
29.
Kamaya
,
M.
, and
Nishioka
,
T.
, 2004, “
Evaluation of Stress Intensity Factors by Finite Element Alternating Method
,”
ASME/JSME 2004 Pressure Vessels and Piping Conference (PVP2004)
, Vol.
481
, pp.
113
120
.
30.
Nishioka
,
T.
, and
Atluri
,
S. N.
, 1983, “
An Analytical Solution for Embedded Elliptical Cracks, and Finite Element Alternating Method for Elliptical Surface Cracks, Subjected to Arbitrary Loadings
,”
Eng. Fract. Mech.
,
17
, pp.
247
268
.
31.
Kamaya
,
M.
, and
Nishioka
,
T.
, 2005, “
Analysis of Surface Crack in Cylinder by Finite Element Alternating Method
,”
ASME J. Pressure Vessel Technol.
,
127
, pp.
165
172
.
32.
Nishioka
,
T.
, and
Atluri
,
S. N.
, 1982, “
Analysis of Surface Flaw in Pressure Vessels by a New 3-Dimensional Alternating Method
,”
ASME J. Pressure Vessel Technol.
,
104
, pp.
299
307
.
33.
O’Donoghue
,
P. E.
,
Nishioka
,
T.
, and
Atluri
,
S. N.
, 1984, “
Multiple Surface Cracks in Pressure Vessels
,”
Eng. Fract. Mech.
,
20
, pp.
545
560
.
34.
Nishioka
,
T.
, and
Kato
,
T.
, 1999, “
An Alternating Method Based on the VNA Solution for Analysis of Damaged Solid Containing Arbitrarily Distributed Elliptical Microcracks
,”
Int. J. Fract.
,
97
, pp.
137
170
.
You do not currently have access to this content.