A simplified technique for determining the lower bound shakedown limit load of a structure, employing an elastic–perfectly plastic (EPP) material model, was previously developed and successfully applied to a long radius 90 deg pipe bend (Abdalla et al., 2006, “Determination of Shakedown Limit Load for a 90 Degree Pipe Bend Using a Simplified Technique,” ASME J. Pressure Vessel Technol., 128, pp. 618–624). The pipe bend is subjected to steady internal pressure magnitudes and cyclic bending moments. The cyclic bending includes three different loading patterns, namely, in-plane closing, in-plane opening, and out-of-plane bending moment loadings. The simplified technique utilizes the finite element (FE) method and employs a small displacement formulation to determine the shakedown limit load without performing lengthy time consuming full elastic-plastic (ELPL) cyclic loading FE simulations or conventional iterative elastic techniques. In the present research, the simplified technique is further modified to handle structures employing an elastic-linear strain hardening material model following Ziegler’s linear kinematic hardening (KH) rule. The shakedown limit load is determined through the calculation of residual stresses developed within the pipe bend structure accounting for the back stresses, determined from the KH shift tensor, responsible for the rigid translation of the yield surface. The outcomes of the simplified technique showed an excellent correlation with the results of full ELPL cyclic loading FE simulations. The shakedown limit moments output by the simplified technique are utilized to generate shakedown diagrams (Bree diagrams) of the pipe bend for a spectrum of steady internal pressure magnitudes. The generated Bree diagrams are compared with the ones previously generated employing the EPP material model. These indicated relatively conservative shakedown limit moments compared with the ones employing the KH rule.

1.
von Kàrmàn
,
Th.
, 1911, “
Über die Formänderung dünnwandiger Röhre, insbesondere federnder Ausgleichröhre
,”
Z. Ver. Dtsch. Ing.
0341-7255,
55
, pp.
1889
1895
.
2.
Melan
,
E.
, 1938, “
Der Spannungszustand eines Mises-Henckyschen Kontinuums bei veraenderlicher Belastung
,”
Sitzber. Akad. Wiss.
,
147
, pp.
73
78
.
3.
Melan
,
E.
, 1938, “
Zur Plastizität des räumlichen Kontinuums
,”
Ing. Arch.
,
8
, pp.
116
126
.
4.
Leckie
,
F. A.
, and
Penny
,
R. K.
, 1967, “
Shakedown Pressure for Radial Nozzles in Spherical Pressure Vessels
,”
Int. J. Solids Struct.
0020-7683,
3
, pp.
743
755
.
5.
Bree
,
J.
, 1967, “
Elastic-Plastic Behaviour of Thin Tubes Subjected to Internal Pressure and Intermittent High Heat Fluxes With Application to Fast Nuclear Reactor Fuel Elements
,”
J. Strain Anal.
0022-4758,
2
, pp.
226
238
.
6.
Parkes
,
E. W.
, 1964, “
Structural Effects of Repeated Thermal Loading
,”
Thermal Stress
,
Pitman
,
London
.
7.
Marriott
,
D. L.
, 1988, “
Evaluation of Deformation or Load Control of Stress Under Inelastic Conditions Using Finite Elements Stress Analysis
,”
ASME Transactions, PVP Division Conference
, Vol.
136
, pp.
3
9
.
8.
Dhalla
,
A. K.
, 1987, “
A Simplified Procedure to Classify Stresses for Elevated Temperature Service
,”
ASME Transactions, PVP Division Conference
, Vol.
120
, pp.
177
188
.
9.
Seshadri
,
R.
, 1991, “
The Generalized Local Stress Strain (GLOSS) Analysis-Theory and Applications
,”
ASME J. Pressure Vessel Technol.
0094-9930,
113
, pp.
219
227
.
10.
Chen
,
H. F.
, and
Ponter
,
A. R. S.
, 2005, “
Integrity Assessment of a 3D Tubeplate Using the Linear Matching Method. Part 1. Shakedown, Reverse Plasticity and Ratchetting
,”
Int. J. Pressure Vessels Piping
0308-0161,
82
, pp.
85
94
.
11.
Mackenzie
,
D.
, and
Boyle
,
J. T.
, 1993, “
A Simple Method for Estimating Shakedown Load for Complex Structures
,”
ASME J. Pressure Vessel Technol.
0094-9930,
265
, pp.
89
94
.
12.
Mohamed
,
A. I.
,
Megahed
,
M. M.
,
Bayoumi
,
L. S.
, and
Younan
,
M. Y. A.
, 1999, “
Applications of Iterative Elastic Techniques for Elastic-Plastic Analysis of Pressure Vessels
,”
ASME J. Pressure Vessel Technol.
0094-9930,
121
, pp.
24
29
.
13.
Muscat
,
M.
, and
Mackenzie
,
D.
, 2003, “
Elastic-Shakedown Analysis of Axisymmetric Nozzles
,”
ASME J. Pressure Vessel Technol.
0094-9930,
125
, pp.
365
370
.
14.
Abdalla
,
H. F.
,
Younan
,
M. Y. A.
, and
Megahed
,
M. M.
, 2007, “
A Simplified Technique for Shakedown Limit Load Determination
,”
Nucl. Eng. Des.
0029-5493,
237
, pp.
1231
1240
.
15.
Megahed
,
M. M.
, 1981, “
Influence of Hardening Rule on the Elasto-Plastic Behaviour of a Simple Structure Under Cyclic Loading
,”
Int. J. Mech. Sci.
0020-7403,
23
, pp.
169
182
.
16.
Abdalla
,
H. F.
,
Younan
,
M. Y. A.
, and
Megahed
,
M. M.
, 2007, “
A Simplified Technique for Shakedown Limit Load Determination of a Large Square Plate With a Hole Under Cyclic Biaxial Loading
,”
Proceedings of the 19th International Conference on Structural Mechanics in Reactor Technology (SMiRT 19)
, Toronto, Canada.
17.
Abdalla
,
H. F.
,
Younan
,
M. Y. A.
, and
Megahed
,
M. M.
, 2006, “
Determination of Shakedown Limit Load for a 90 Degree Pipe Bend Using a Simplified Technique
,”
ASME J. Pressure Vessel Technol.
0094-9930,
128
, pp.
618
624
.
18.
Abdalla
,
H. F.
,
Younan
,
M. Y. A.
, and
Megahed
,
M. M.
, 2007, “
Shakedown Limits of a 90-Degree Pipe Bend Using Small and Large Displacement Formulations
,”
ASME J. Pressure Vessel Technol.
0094-9930,
129
, pp.
287
295
.
19.
Chen
,
X.
,
Gao
,
B.
, and
Chen
,
G.
, 2006, “
Ratcheting Study of Pressurized Elbows Subjected to Reversed In-Plane Bending
,”
ASME J. Pressure Vessel Technol.
0094-9930,
128
, pp.
525
532
.
20.
Abdalla
,
H. F.
,
Younan
,
M. Y. A.
, and
Megahed
,
M. M.
, 2009, “
Comparison of Pipe Bend Ratchetting/Shakedown Test Results With the Shakedown Boundary Determined via a Simplified Technique
,”
ASME Transactions, PVP Division Conference
, Prague, Czech Republic, July.
21.
Ohno
,
N.
, and
Wang
,
J.
, 1993, “
Kinematic Hardening Rules With Critical State of Dynamic Recovery. Part I: Formulation and Basic Features for Ratchetting Behavior
,”
Int. J. Plast.
0749-6419,
9
, pp.
375
390
.
22.
Ohno
,
N.
, and
Wang
,
J.
, 1993, “
Kinematic Hardening Rules With Critical State of Dynamic Recovery. Part II: Application to Experiments of Ratcheting Behavior
,”
Int. J. Plast.
0749-6419,
9
, pp.
391
403
.
23.
Hibbitt, Karlsson and Sorensen, Inc.
, 2006, ABAQUS Analysis User’s Manual, Providence, RI.
24.
Karamanos
,
S. A.
,
Tsouvalas
,
D.
, and
Gresnigt
,
A. M.
, 2004, “
Ultimate Capacity of Pressurized 90 Deg Elbows Under Bending
,”
ASME Transactions, PVP Division Conference
, Vol.
477
, pp.
139
148
.
25.
Hibbitt, Karlsson and Sorensen, Inc.
, 2006, ABAQUS/STANDARD, Providence, RI.
26.
Sobel
,
L. H.
, and
Newman
,
S. Z.
, 1980, “
Comparison of Experimental and Simplified Analytical Results for the In-Plane Plastic Bending and Buckling of an Elbow
,”
ASME J. Pressure Vessel Technol.
0094-9930,
102
, pp.
400
409
.
27.
2004, ASME Boiler and Pressure Vessel Code, Section III, Division I, NG-3000.
You do not currently have access to this content.