Ultrasonic impact treatment (UIT) can be used to create a thin nanostructured surface layer that plays a significant role in enhancing the overall strength, fatigue life, and corrosion resistance of the treated material. The hardness and elastic modulus of surface nanostructured 304 stainless steel treated by UIT have been investigated by nanoindentation and microhardness measurements. The hardness of the top nanostructured surface layer and its elastic modulus are about 38% and 30% higher, respectively, than those of the bulk material in the nanohardness testing. Also, the hardness is increased by about 23% in the Vickers microhardness testing. The nanohardness of the nanostructured surface layers decreases with depth and then trends to stable values. A hardened layer is found in the impact zone and the thickness is approximately 450500μm. All results demonstrated that the surface nanocrystallization can effectively enhance the mechanical properties of the 304 stainless steel.

1.
Lu
,
K.
, and
Lu
,
J.
, 2004, “
Nanostructured Surface Layer on Metallic Materials Induced by Surface Mechanical Attrition Treatment
,”
Mater. Sci. Eng., A
0921-5093,
375–377
, pp.
38
45
.
2.
Lu
,
K.
, 1996, “
Nanocrystalline Metals Crystallized From Amorphous Solids: Nanocrystallization, Structure, and Properties
,”
Mater. Sci. Eng. R.
0927-796X,
16
, pp.
161
221
.
3.
Lu
,
K.
, and
Lu
,
J.
, 1999, “
Surface Nanocrystallization (SNC) of Metallic Materials-Presentation of Concept Behind a New Approach
,”
J. Mater. Sci. Technol.
0861-9786,
15
, pp.
193
197
.
4.
Valiev
,
R. Z.
,
Chmelik
,
F.
,
Bordeaux
,
F.
,
Kapelski
,
G.
, and
Baudelet
,
B.
, 1992, “
The Hall–Petch Relation in Submicro-Grained Al-1.5% Mg Alloy
,”
Scr. Metall. Mater.
0956-716X,
27
, pp.
855
860
.
5.
Valiev
,
R. Z.
,
Krasilnikov
,
N. A.
, and
Tsenev
,
N. K.
, 1991, “
Plastic Deformation of Alloys With Submicron-Grained Structure
,”
Mater. Sci. Eng., A
0921-5093,
137
, pp.
35
40
.
6.
Valiev
,
R. Z.
,
Korznikov
,
A. V.
, and
Mulyukov
,
R. R.
, 1993, “
Structure and Properties of Ultrafine-Grained Materials Produced by Severe Plastic Deformation
,”
Mater. Sci. Eng., A
0921-5093,
168
, pp.
141
148
.
7.
Jain
,
M.
, and
Christman
,
T.
, 1996, “
Processing of Submicron Grain 304 Stainless Steel
,”
J. Mater. Res.
0884-2914,
11
, pp.
2677
2680
.
8.
Saito
,
Y.
,
Tsuji
,
N.
,
Utsunomiya
,
H.
,
Sakai
,
T.
, and
Hong
,
R. G.
, 1998, “
Ultra-Fine Grained Bulk Aluminum Produced by Accumulative Roll-Bonding (ARB) Process
,”
Scr. Mater.
1359-6462,
39
, pp.
1221
1227
.
9.
Statnikov
,
E. S.
,
Zhuravlev
,
L. V.
,
Alekseev
,
A. F.
,
Bobylev
,
Y. A.
,
Shevtsov
,
E. M.
,
Sokolenko
,
V. I.
, and
Kulikov
,
V. F.
, 1975, “
Ultrasonic Head for Strain Hardening and Relaxation Treatment (in Russian)
,” USSR Inventor’s Certificate No. 472782, Byull. Izobret. No. 21, Priority of 1972.
10.
Liu
,
G.
,
Lu
,
J.
, and
Lu
,
K.
, 2000, “
Surface Nanocrystallization of 316L Stainless Steel Induced by Ultrasonic Shot Peening
,”
Mater. Sci. Eng., A
0921-5093,
286
, pp.
91
95
.
11.
Ling
,
X.
, and
Ma
,
G.
, 2009, “
Effect of Ultrasonic Impact Treatment on the Stress Corrosion Cracking of 304 Stainless Steel Welded Joints
,”
ASME J. Pressure Vessel Technol.
0094-9930,
131
, pp.
051502
.
12.
Edwards
,
A. J.
, 1975, “
X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials
,”
Anal. Chim. Acta
0003-2670,
77
, p.
349
.
13.
Oliver
,
W. C.
, and
Pharr
,
G. M.
, 1992, “
Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
0884-2914,
7
, pp.
1564
1583
.
You do not currently have access to this content.