Thin cylindrical shells used in engineering applications are often susceptible to failure by elastic buckling. Most experimental and theoretical research on shell buckling relates only to simple and relatively uniform stress states, but many practical load cases involve stresses that vary significantly throughout the structure. The buckling strength of an imperfect shell under relatively uniform compressive stresses is often much lower than that under locally high stresses, so the lack of information and the need for conservatism have led standards and guides to indicate that the designer should use the buckling stress for a uniform stress state even when the peak stress is rather local. However, this concept leads to the use of much thicker walls than is necessary to resist buckling, so many knowledgeable designers use very simple ideas to produce safe but unverified designs. Unfortunately, very few scientific studies of shell buckling under locally elevated compressive stresses have ever been undertaken. The most critical case is that of the cylinder in which locally high axial compressive stresses develop extending over an area that may be comparable with the characteristic size of a buckle. This paper explores the buckling strength of an elastic cylinder in which a locally high axial membrane stress state is produced far from the boundaries (which can elevate the buckling strength further) and adjacent to a serious geometric imperfection. Care is taken to ensure that the stress state is as simple as possible, with local bending and the effects of internal pressurization eliminated. The study includes explorations of different geometries, different localizations of the loading, and different imperfection amplitudes. The results show an interesting distinction between narrower and wider zones of elevated stresses. The study is a necessary precursor to the development of a complete design rule for shell buckling strength under conditions of locally varying axial compressive stress.

1.
DIN 18 800, 1990, “
Stahlbauten: Stabilitätsfälle, Schalenbeulen, DIN 18800 Part 4
,” Deutsches Institut für Normung, Berlin.
2.
EN 1993-1-6, 2007, “
Eurocode 3: Design of Steel Structures, Part 1.6: General Rules—Strength and Stability of Shell Structures
,” CEN, Brussels.
3.
J. M.
Rotter
and
H.
Schmidt
, eds., 2008,
Stability of Steel Shells: European Design Recommendations
,
5th ed.
,
European Convention for Constructional Steelwork
,
Brussels, Belgium
.
4.
Ross
,
B.
,
Mayers
,
J.
, and
Jaworski
,
A.
, 1965, “
Buckling of Thin Cylindrical Shells Heated Along an Axial Strip
,”
Exp. Mech.
0014-4851,
5
(
8
), pp.
247
256
.
5.
Song
,
C. Y.
,
Teng
,
J. G.
, and
Rotter
,
J. M.
, 2004, “
Imperfection Sensitivity of Thin Elastic Cylindrical Shells Subject to Partial Axial Compression
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
7155
7180
.
6.
EN 1993-4-1, 2007, “
Eurocode 3: Design of Steel Structures, Part 4.1: Silos
,” CEN, Brussels.
7.
Rotter
,
J. M.
, 1986, “
The Analysis of Steel Bins Subject to Eccentric Discharge
,”
Proceedings of the Second International Conference on Bulk Materials Storage, Handling and Transportation, IE Aust
, Wollongong, Australia, pp.
264
271
.
8.
Rotter
,
J. M.
, 1999, “
Flow and Pressures in Silo Structural Integrity Assessments
,”
Proceedings of the International Symposium on Reliable Flow of Particulate Solids III
, Porsgrunn, Norway, pp
281
292
.
9.
Sadowski
,
A. J.
, and
Rotter
,
J. M.
, 2010, “
A Study of Buckling in Steel Silos Under Eccentric Discharge Flows of Stored Solids
,”
J. Engrg Mechs, ASCE
,
136
(
6
), pp.
769
776
.
10.
Schmidt
,
K. H.
, and
Stiglat
,
K.
, 1987, “
Anmerkungen zur Bemessungslast von Silos
,”
Beton-und Stahlbetonbau
0005-9900,
9
, pp.
239
242
.
11.
Ooi
,
J. Y.
,
Pham
,
L.
, and
Rotter
,
J. M.
, 1990, “
Systematic and Random Features of Measured Pressures on Full-Scale Silo Walls
,”
Eng. Struct.
0141-0296,
12
(
2
), pp.
74
87
.
12.
Rotter
,
J. M.
, 2001,
Guide for the Economic Design of Circular Metal Silos
,
Spon
,
London
.
13.
Rotter
,
J. M.
,
Ooi
,
J. Y.
, and
Zhong
,
Z.
, 2006, “
Critical Pressure Conditions in Silos
,”
Proceedings of the Fifth International Conference for Conveying & Handling of Particulate Solids
, Sorrento, Italy.
14.
EN 1991-4, 2007, “
Eurocode 1: Basis of Design and Actions on Structures, Part 4—Silos and Tanks
,” CEN, Brussels.
15.
Cai
,
M. J.
, 2003, “
Buckling of Cylindrical Shells Under Non-Uniform Loads
,” Ph.D. thesis, University of Edinburgh, Edinburgh, UK.
16.
Bijlaard
,
D. L.
, and
Gallagher
,
R. H.
, 1959, “
Elastic Instability of a Cylindrical Shell Under Arbitrary Circumferential Variation of Axial Stresses
,”
J. Aerosp. Sci.
0095-9820,
27
(
11
), pp.
854
858
, 866.
17.
Peter
,
J.
, 1974, “
Zur Stabilitat von Kreiscylinderschalen unter ungleichmassig verteilten axialen Randbelastungen
,” Ph.D. thesis, University of Hannover, Hannover, Germany.
18.
Libai
,
A.
, and
Durban
,
D.
, 1977, “
Buckling of Cylindrical Shells Subjected to Non-Uniform Axial Loads
,”
ASME J. Appl. Mech.
0021-8936,
44
, pp.
714
720
.
19.
Guggenberger
,
W.
,
Greiner
,
R.
, and
Rotter
,
J. M.
, 2000, “
The Behaviour of Locally-Supported Cylindrical Shells: Unstiffened Shells
,”
J. Constr. Steel Res.
0143-974X,
56
(
2
), pp.
175
197
.
20.
Doerich
,
C.
, 2008, “
Effect of Geometric Nonlinearity of Locally Supported Cylinders
,”
Structures and Granular Solids: From Scientific Principles to Engineering Applications
,
Taylor & Francis
,
Edinburgh, UK
, pp.
183
197
.
21.
Vanlaere
,
W.
,
Doerich
,
C.
,
Lagae
,
G.
, and
Van Impe
,
R.
, 2009, “
Steel Cylinders on Local Supports With Rigid Stiffeners
,”
IASS Congress
, Valencia, Spain, pp.
574
575
.
22.
Abir
,
D.
, and
Nardo
,
S. V.
, 1958, “
Thermal Buckling of Circular Cylindrical Shells Under Circumferential Temperature Gradients
,”
J. Aerosp. Sci.
0095-9820,
26
(
12
), pp.
803
808
.
23.
Hill
,
D. W.
, 1959, “
Buckling of a Thin Circular Cylindrical Shell Heated Along an Axial Strip
,” Department of Aeronautical Engineering, Stanford University, Report No. 88.
24.
Bushnell
,
D.
, and
Smith
,
S.
, 1971, “
Stress and Buckling of Non-Uniformly Heated Cylindrical and Conical Shells
,”
AIAA J.
0001-1452,
9
, pp.
2314
2321
.
25.
Koiter
,
W. T.
, 1945, “
On the Stability of Elastic Equilibrium
,” Ph.D. thesis, Delft University, Netherlands.
26.
Calladine
,
C. R.
, 1983,
Theory of Shell Structures
,
Cambridge University Press
,
Cambridge, UK
.
27.
Yamaki
,
N.
, 1984,
Elastic Stability of Circular Cylindrical Shells
,
North-Holland
,
Amsterdam, The Netherlands
.
28.
Rotter
,
J. M.
, 2004, “
Buckling of Cylindrical Shells Under Axial Compression
,”
Buckling of Thin Metal Shells
,
J. G.
Teng
and
J. M.
Rotter
, eds.,
Spon
,
London
, pp.
42
87
.
29.
J. G.
Teng
and
J. M.
Rotter
, eds., 2004,
Buckling of Thin Metal Shells
,
Spon
,
London
.
30.
Weingarten
,
V. I.
,
Morgan
,
E. J.
, and
Seide
,
P.
, 1965, “
Elastic Stability of Thin-Walled Cylindrical and Conical Shells Under Combined Internal Pressure and Axial Compression
,”
AIAA J.
0001-1452,
3
(
6
), pp.
1118
1125
.
31.
Rotter
,
J. M.
, and
Teng
,
J. G.
, 1989, “
Elastic Stability of Cylindrical Shells With Weld Depressions
,”
J. Struct Engg, ASCE
,
115
(
5
), pp.
1244
1263
.
32.
Lorenz
,
R.
, 1908, “
Buckling of a Cylindrical Shell under Axial Compression
,”
Z. Ver. Dtsch. Ing.
0341-7255,
52
, pp.
1706
1713
.
33.
Timoshenko
,
S. P.
, 1910, “
Einige Stabilitätsprobleme der Elasticitätstheorie
,”
Zeitschrift für Mathematik und Physik
,
58
, pp.
378
385
.
34.
Southwell
,
R. V.
, 1914, “
On the General Theory of Elastic Stability
,”
Philos Trans. R. Soc. London, Ser. A
,
213
, pp.
187
244
.
35.
HKS
, 1998,
ABAQUS/Standard User’s Manual, Version 5.8
,
Hibbitt, Karlsson & Sorensen, Inc.
,
Pawtucket, RI
.
36.
Cai
,
M. J.
,
Holst
,
J. M. F. G.
, and
Rotter
,
J. M.
, 2002, “
Buckling Strength of Thin Cylindrical Shells Under Localized Axial Compression
,”
15th ASCE Engineering Mechanics Division Conference
, New York, p.
99
.
37.
Cai
,
M. J.
,
Holst
,
J. M. F. G.
, and
Rotter
,
J. M.
, 2003, “
Parametric Study on the Buckling of Thin Steel Cylindrical Shells Under Elevated Axial Compression Stresses
,”
16th ASCE Engineering Mechanics Division Conference
,
Seattle, WA
.
38.
Cai
,
M. J.
,
Holst
,
J. M. F. G.
, and
Rotter
,
J. M.
, 2003, “
Buckling of Cylindrical Tank Shells Under Local Axial Compression Stresses
,”
ECCS International Conference on Design, Inspection, Maintenance and Operation of Cylindrical Steel Tanks and Pipelines
, Prague, Czech Republic, pp.
70
76
.
39.
Doerich
,
C.
, and
Rotter
,
J. M.
, 2008, “
Behavior of Cylindrical Steel Shells Supported on Local Brackets
,”
J. Struct Engrg, ASCE
134
(
8
), pp.
1269
1277
.
40.
Teng
,
J. G.
, and
Rotter
,
J. M.
, 1992, “
Buckling of Pressurized Axisymmetrically Imperfect Cylinders Under Axial Loads
,”
J. Engrg Mechs, ASCE
,
118
(
2
), pp.
229
247
.
41.
Rotter
,
J. M.
, 1997, “
Design Standards and Calculations for Imperfect Pressurised Axially Compressed Cylinders
,”
International Conference on Carrying Capacity of Steel Shell Structures
, Brno, Czech Republic, pp.
354
360
.
42.
Berry
,
P. A.
,
Rotter
,
J. M.
, and
Bridge
,
R. Q.
, 2000, “
Compression Tests on Cylinders With Circumferential Weld Depressions
,”
J. Engrg Mechs, ASCE
,
126
(
4
), pp.
405
413
.
43.
Holst
,
J. M. F. G.
,
Rotter
,
J. M.
, and
Calladine
,
C. R.
, 1999, “
Imperfections in Cylindrical Shells Resulting From Fabrication Misfits
,”
J. Engrg Mechs, ASCE
,
125
(
4
), pp.
410
418
.
44.
Holst
,
J. M. F. G.
,
Rotter
,
J. M.
, and
Calladine
,
C. R.
, 2000, “
Imperfections and Buckling in Cylindrical Shells With Consistent Residual Stresses
,”
J. Constr. Steel Res.
0143-974X,
54
, pp.
265
282
.
45.
Schmidt
,
H.
and
Winterstetter
,
T. A.
, 2001, “
Substitute Geometrical Imperfections for the Numerical Buckling Assessment of Cylindrical Shells Under Combined Loading
,”
Proceedings of Euromech 424
, Kerkrade, The Netherlands, pp.
82
84
.
You do not currently have access to this content.