The current paper discusses the selection of Manson–Haferd and Larson–Miller constants on correlation results of creep rupture property in several heat-resistant steels. It indicates that the change in Larson–Miller constant CLM has obvious effect on the predicting result of rupture life and the optimal CLM values will depend on materials and the optimal ranges of the values are narrow. However, for Manson–Haferd constants Ta and logta, they are at least phenomenally not independent variables but show a linear relationship: logta=27.0150.0267Ta. It is shown that the values of Manson–Haferd constants (Ta,logta) can be selected in a wide range with desirable correlation accuracy and a set of Manson–Haferd constant (Ta=450,logta=15) is recommended to correlate the creep rupture data.

1.
Zhang
,
J. S.
, 2007,
High-Temperature Deformation and Fracture of Material
,
Science
,
Beijing
, Chap. 21.
2.
Marahleh
,
G.
,
Kheder
,
A. R. I.
, and
Hamad
,
H. F.
, 2006, “
Creep Life Prediction of Service-Exposed Turbine Blades
,”
Mater. Sci. Eng., A
0921-5093,
433
, pp.
305
309
.
3.
Larson
,
F. R.
, and
Miller
,
J.
, 1952, “
A Time-Temperature Relationship for Rupture and Creep Stresses
,”
Trans. ASME
0097-6822,
74
, pp.
765
781
.
4.
Manson
,
S. S.
, and
Haferd
,
A. M.
, 1953, “
A Linear Time-Temperature Relation for Extrapolation of Creep and Stress-Rupture Data
,” NASA-TN-2890.
5.
Yamamoto
,
Y.
,
Brady
,
M. P.
,
Lu
,
Z. P.
,
Maziasz
,
P. J.
,
Liu
,
C. T.
,
Pint
,
B. A.
,
More
,
K. L.
,
Meyer
,
H. M.
, and
Payzant
,
E. A.
, 2007, “
Creep-Resistant, Al2O3-Forming Austenitic Stainless Steels
,”
Science
0036-8075,
316
, pp.
433
436
.
6.
Ray
,
A. K.
,
Tiwari
,
Y. N.
,
Roy
,
P. K.
,
Chaudhuri
,
S.
,
Bose
,
S. C.
,
Ghosha
,
R. N.
, and
Whittenberger
,
J. D.
, 2007, “
Creep Rupture Analysis and Remaining Life Assessment of 2.25Cr–1Mo Steel Tubes From a Thermal Power Plant
,”
Mater. Sci. Eng., A
0921-5093,
454–455
, pp.
679
684
.
7.
Woo
,
G. K.
,
Song
,
N. Y.
, and
Woo
,
S. R.
, 2005, “
Application and Standard Error Analysis of the Parametric Methods for Predicting the Creep Life of Type 316LN SS
,”
Key Eng. Mater.
1013-9826,
297–300
, pp.
2272
277
.
8.
Krivenyuk
,
V. G. S.
, 2007, “
Correlation of Creep-Rupture Data for Complex Alloys at Elevated Temperatures
,”
Metalurgija
,
46
(
2
), pp.
79
85
.
9.
Mendelson
,
A.
,
Roberts
,
E.
, Jr.
, and
Manson
,
S. S.
, 1965, “
Optimization of Time-Temperature Parameters for Creep and Stress Rupture, With Application to Data From German Cooperative Long-Time Creep Program
,” NASA-TN-D-2975.
10.
Zhao
,
J.
,
Han
,
S. Q.
,
Gao
,
H. B.
, and
Wang
,
L.
, 2004, “
Remaining Life Assessment of a CrMoV Steel Using the Z-parameter Method
,”
Int. J. Pressure Vessels Piping
0308-0161,
81
, pp.
757
760
.
11.
Xing
,
L.
,
Zhao
,
J.
,
Shen
,
F. Z.
, and
Feng
,
W.
, 2006, “
Reliability Analysis and Life Prediction of HK40 Steel During High-Temperature Exposure
,”
Int. J. Pressure Vessels Piping
0308-0161,
83
, pp.
730
735
.
You do not currently have access to this content.