The load carrying capacity of a component or structure with varying material properties (inhomogeneous) is investigated using various lower- and upper-bound limit load multipliers in the context of variational principles. In order to evaluate the different limit load multipliers, the elastic modulus adjustment procedure is used to obtain statically admissible stress and kinematically admissible strain fields. The proposed upper and lower bound limit load estimates are compared with the results obtained from inelastic finite element analysis for two- and three-dimensional geometries.
1.
2007, ASME Boiler and Pressure Vessel Code, Section III.
2.
2007, ASME Boiler and Pressure Vessel Code, Section VIII.
3.
Webster
, G.
, and Ainsworth
, R. A.
, 1994, High Temperature Component Life Assessment
, Chapman and Hall
, London, UK
.4.
Ainsworth
, R. A.
, Dean
, D. W.
, and Budden
, P. J.
, 2000, “Development in Creep Fracture Assessments Within the R5 Procedure
,” Proceedings of the IUTAM Symposium on Creep in Structures
, Nagoya, Japan, pp. 321
–330
.5.
1994, “
Guide to Methods for the Assessment of the Influence of Crack Growth on the Significance of Design in Component Operating at High Temperature
,” BSI
Paper No. PD6539:1994.6.
Zyczkowski
, M.
, 1981, Combined Loadings in the Theory of Plasticity
, Polish-Scientific Publication
, Warsaw
.7.
Prager
, W.
, and Hodge
, P. G.
, 1951, Theory of Perfectly Plastic Solids
, Wiley
, New York
.8.
Mura
, T.
, and Lee
, S. L.
, 1963, “Application of Variational Principles to Limit Analysis
,” Q. Appl. Math.
0033-569X, 21
, pp. 243
–248
.9.
Mura
, T.
, Rimawi
, W. H.
, and Lee
, S. L.
, 1965, “Extended Theorems of Limit Analysis
,” Q. Appl. Math.
0033-569X, 23
, pp. 171
–179
.10.
Sacchi
, G.
, and Save
, M.
, 1968, “On the Evaluation of the Limit Load for Rigid-Perfectly Plastic Continua
,” Meccanica
0025-6455, 3
, pp. 199
–206
.11.
Rimawi
, W. H.
, Mura
, T.
, and Lee
, S. L.
, 1966, “A Variational Method for Limit Analysis of Anisotropic Solids
,” Developments in Theoretical and Applied Mechanics: Proceedings of the Third Southeastern Conference of Theoretical and Applied Mechanics
, Columbia, SC, Vol. 3
, pp. 57
–71
.12.
Mura
, T.
, Lee
, S. L.
, and Rimawi
, W. H.
, 1968, “A Variational Method for Limit Analysis of Anisotropic and Nonhomogeneous Solids
,” Developments in Theoretical and Applied Mechanics: Proceedings of the Fourth Southeastern Conference of Theoretical and Applied Mechanics
, New Orleans, LA, Vol. 4
, pp. 541
–549
.13.
Seshadri
, R.
, and Mangalaramanan
, S. P.
, 1997, “Lower Bound Limit Load Using Variational Concepts: The mα-Method
,” Int. J. Pressure Vessels Piping
0308-0161, 71
, pp. 93
–106
.14.
Reinhardt
, W. D.
, and Seshadri
, R.
, 2003, “Limit Load Bounds for the mα Multipliers
,” ASME J. Pressure Vessel Technol.
0094-9930, 125
, pp. 11
–18
.15.
Pan
, L.
, and Seshadri
, R.
, 2002, “Limit Load Estimation Using Plastic Flow Parameter in Repeated Elastic Finite Element Analysis
,” ASME J. Pressure Vessel Technol.
0094-9930, 124
, pp. 433
–439
.16.
Mendelson
, A.
, 1968, Plasticity: Theory and Applications
, MacMillian
, New York
.17.
Adibi-Asl
, R.
, and Reinhardt
, W.
, 2008, “The Elastic Modulus Adjustment Procedure (EMAP) for Shakedown
” ASME
Paper No. PVP2008-61641.18.
Adibi-Asl
, R.
, Fanous
, I. F. Z.
, and Seshadri
, R.
, 2006, “Elastic Modulus Adjustment Procedures-Improved Convergence Schemes
,” Int. J. Pressure Vessels Piping
0308-0161, 83
, pp. 154
–160
.19.
Adibi-Asl
, R.
, and Seshadri
, R.
, 2007, “Local Limit Load Analysis Using the M-Beta Method
,” ASME J. Pressure Vessel Technol.
0094-9930, 129
, pp. 296
–305
.20.
Ponter
, A. R. S.
, Fuschi
, P.
, and Engelhardt
, M.
, 2000, “Limit Analysis for a General Class of Yield Conditions
,” Eur. J. Mech. A/Solids
0997-7538, 19
, pp. 401
–421
.21.
Ponter
, A. R. S.
, and Engelhardt
, M.
, 2000, “Shakedown Limit for a General Yield Condition
,” Eur. J. Mech. A/Solids
0997-7538, 19
, pp. 423
–445
.Copyright © 2010
by American Society of Mechanical Engineers
You do not currently have access to this content.