The load carrying capacity of a component or structure with varying material properties (inhomogeneous) is investigated using various lower- and upper-bound limit load multipliers in the context of variational principles. In order to evaluate the different limit load multipliers, the elastic modulus adjustment procedure is used to obtain statically admissible stress and kinematically admissible strain fields. The proposed upper and lower bound limit load estimates are compared with the results obtained from inelastic finite element analysis for two- and three-dimensional geometries.

1.
2007, ASME Boiler and Pressure Vessel Code, Section III.
2.
2007, ASME Boiler and Pressure Vessel Code, Section VIII.
3.
Webster
,
G.
, and
Ainsworth
,
R. A.
, 1994,
High Temperature Component Life Assessment
,
Chapman and Hall
,
London, UK
.
4.
Ainsworth
,
R. A.
,
Dean
,
D. W.
, and
Budden
,
P. J.
, 2000, “
Development in Creep Fracture Assessments Within the R5 Procedure
,”
Proceedings of the IUTAM Symposium on Creep in Structures
, Nagoya, Japan, pp.
321
330
.
5.
1994, “
Guide to Methods for the Assessment of the Influence of Crack Growth on the Significance of Design in Component Operating at High Temperature
,”
BSI
Paper No. PD6539:1994.
6.
Zyczkowski
,
M.
, 1981,
Combined Loadings in the Theory of Plasticity
,
Polish-Scientific Publication
,
Warsaw
.
7.
Prager
,
W.
, and
Hodge
,
P. G.
, 1951,
Theory of Perfectly Plastic Solids
,
Wiley
,
New York
.
8.
Mura
,
T.
, and
Lee
,
S. L.
, 1963, “
Application of Variational Principles to Limit Analysis
,”
Q. Appl. Math.
0033-569X,
21
, pp.
243
248
.
9.
Mura
,
T.
,
Rimawi
,
W. H.
, and
Lee
,
S. L.
, 1965, “
Extended Theorems of Limit Analysis
,”
Q. Appl. Math.
0033-569X,
23
, pp.
171
179
.
10.
Sacchi
,
G.
, and
Save
,
M.
, 1968, “
On the Evaluation of the Limit Load for Rigid-Perfectly Plastic Continua
,”
Meccanica
0025-6455,
3
, pp.
199
206
.
11.
Rimawi
,
W. H.
,
Mura
,
T.
, and
Lee
,
S. L.
, 1966, “
A Variational Method for Limit Analysis of Anisotropic Solids
,”
Developments in Theoretical and Applied Mechanics: Proceedings of the Third Southeastern Conference of Theoretical and Applied Mechanics
, Columbia, SC, Vol.
3
, pp.
57
71
.
12.
Mura
,
T.
,
Lee
,
S. L.
, and
Rimawi
,
W. H.
, 1968, “
A Variational Method for Limit Analysis of Anisotropic and Nonhomogeneous Solids
,”
Developments in Theoretical and Applied Mechanics: Proceedings of the Fourth Southeastern Conference of Theoretical and Applied Mechanics
, New Orleans, LA, Vol.
4
, pp.
541
549
.
13.
Seshadri
,
R.
, and
Mangalaramanan
,
S. P.
, 1997, “
Lower Bound Limit Load Using Variational Concepts: The mα-Method
,”
Int. J. Pressure Vessels Piping
0308-0161,
71
, pp.
93
106
.
14.
Reinhardt
,
W. D.
, and
Seshadri
,
R.
, 2003, “
Limit Load Bounds for the mα Multipliers
,”
ASME J. Pressure Vessel Technol.
0094-9930,
125
, pp.
11
18
.
15.
Pan
,
L.
, and
Seshadri
,
R.
, 2002, “
Limit Load Estimation Using Plastic Flow Parameter in Repeated Elastic Finite Element Analysis
,”
ASME J. Pressure Vessel Technol.
0094-9930,
124
, pp.
433
439
.
16.
Mendelson
,
A.
, 1968,
Plasticity: Theory and Applications
,
MacMillian
,
New York
.
17.
Adibi-Asl
,
R.
, and
Reinhardt
,
W.
, 2008, “
The Elastic Modulus Adjustment Procedure (EMAP) for Shakedown
ASME
Paper No. PVP2008-61641.
18.
Adibi-Asl
,
R.
,
Fanous
,
I. F. Z.
, and
Seshadri
,
R.
, 2006, “
Elastic Modulus Adjustment Procedures-Improved Convergence Schemes
,”
Int. J. Pressure Vessels Piping
0308-0161,
83
, pp.
154
160
.
19.
Adibi-Asl
,
R.
, and
Seshadri
,
R.
, 2007, “
Local Limit Load Analysis Using the M-Beta Method
,”
ASME J. Pressure Vessel Technol.
0094-9930,
129
, pp.
296
305
.
20.
Ponter
,
A. R. S.
,
Fuschi
,
P.
, and
Engelhardt
,
M.
, 2000, “
Limit Analysis for a General Class of Yield Conditions
,”
Eur. J. Mech. A/Solids
0997-7538,
19
, pp.
401
421
.
21.
Ponter
,
A. R. S.
, and
Engelhardt
,
M.
, 2000, “
Shakedown Limit for a General Yield Condition
,”
Eur. J. Mech. A/Solids
0997-7538,
19
, pp.
423
445
.
You do not currently have access to this content.