In this paper, the classic coupled thermoelasticity model of hollow and solid spheres under radial-symmetric loading condition (r,t) is considered. A full analytical method is used and an exact unique solution of the classic coupled equations is presented. The thermal and mechanical boundary conditions, the body force, and the heat source are considered in the most general forms, where no limiting assumption is used. This generality allows to simulate a variety of applicable problems.

1.
Hetnarski
,
R. B.
, 1964, “
Solution of the Coupled Problem of Thermoelasticity in the Form of Series of Functions
,”
Arch. Mech. Stosow.
0004-0800,
16
, pp.
919
941
.
2.
Hetnarski
,
R. B.
, and
Ignaczak
,
J.
, 1993, “
Generalized Thermoelasticity: Closed-Form Solutions
,”
J. Therm. Stresses
0149-5739,
16
, pp.
473
498
.
3.
Hetnarski
,
R. B.
, and
Ignaczak
,
J.
, 1994, “
Generalized Thermoelasticity: Response of Semi-Space to a Short Laser Pulse
,”
J. Therm. Stresses
0149-5739,
17
, pp.
377
396
.
4.
Georgiadis
,
H. G.
, and
Lykotrafitis
,
G.
, 2005, “
Rayleigh Waves Generated by a Thermal Source: A Three-Dimensional Transient Thermoelasticity Solution
,”
ASME J. Appl. Mech.
0021-8936,
72
, pp.
129
138
.
5.
Wagner
,
P.
, 1994, “
Fundamental Matrix of the System of Dynamic Linear Thermoelasticity
,”
J. Therm. Stresses
0149-5739,
17
, pp.
549
565
.
6.
Bagri
,
A.
, and
Eslami
,
M. R.
, 2008, “
Generalized Thermoelasticity of Functionaly Graded Annular Disk Considering the Lord-Shulman Theory
,”
Compos. Struct.
0263-8223,
83
, pp.
168
179
.
7.
Lee
,
H. L.
, and
Yang
,
Y. C.
, 2001, “
Inverse Problem of Coupled Thermoestaticity for Prediction of Heat Flux and Thermal Stress in Annular Cylinder
,”
Int. Commun. Heat Mass Transfer
0735-1933,
28
(
5
), pp.
661
670
.
8.
Yang
,
Y. C.
,
Chen
,
U. C.
, and
Chang
,
W. J.
, 2002, “
An Inverse Problem of Coupled Thermoestaticity in Predicting Heat Flux and Thermal Stress by Strain Measurement
,”
J. Therm. Stresses
0149-5739,
25
, pp.
265
281
.
9.
Eraslan
,
A. N.
, and
Orean
,
Y.
, 2002, “
Computation of Transient Thermal Stresses in Elastic-Plastic Tubes: Effect of Coupling and Temperature-Dependent Physical Properties
,”
J. Therm. Stresses
0149-5739,
25
, pp.
559
572
.
10.
Yang
,
Y. C.
, and
Chu
,
S. S.
, 2001, “
Transient Coupled Thermoelastic Analysis of an Annular Fin
,”
Int. Commun. Heat Mass Transfer
0735-1933,
28
(
8
), pp.
1103
1114
.
11.
Bahtui
,
A.
, and
Eslami
,
M. R.
, 2007, “
Coupled Thermoelasticity of Functionally Graded Cylindrical Shells
,”
Mech. Res. Commun.
0093-6413,
34
, pp.
1
18
.
12.
Bakhshi
,
M.
,
Bagri
,
A.
, and
Eslami
,
M. R.
, 2006, “
Coupled Thermoelasticity of Functionally Graded Disk
,”
Mech. Adv. Mater. Structures
,
13
, pp.
214
225
.
13.
Hosseni-Tehrani
,
P.
, and
Eslami
,
M. R.
, 2000, “
BEM Analysis of Thermal and Mechanical Shock in a Two-Dimensional Finite Domain Considering Coupled Thermoelasticity
,”
Engineering Analysis With B.E.
,
24
, pp.
249
257
.
14.
Tanigawa
,
Y.
, and
Takeuti
,
Y.
, 1982, “
Coupled Thermal Stress Problem in a Hollow Sphere Under a Partial Heating
,”
Int. J. Eng. Sci.
0020-7225,
20
(
1
), pp.
41
48
.
15.
Bagri
,
A.
, and
Eslami
,
M. R.
, 2004, “
Generalized Coupled Thermoelasticity of Disks Based on the Lord-Shulman Model
,”
J. Therm. Stresses
0149-5739,
27
, pp.
691
704
.
16.
Bagri
,
A.
,
Taheri
,
H.
,
Eslami
,
M. R.
, and
Fariborz
,
F.
, 2006, “
Generalized Coupled Thermoelasticity of Layer
,”
J. Therm. Stresses
0149-5739,
29
, pp.
359
370
.
17.
Cannarozzi
,
A. A.
, and
Ubertini
,
F.
, 2001, “
Mixed Variational Method for Linear Coupled Thermoelastic Analysis
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
717
739
.
18.
Simmons
,
G. F.
, 1972,
Differential Equations With Applications and Historical Notes
,
McGraw-Hill
,
New York
.
19.
Hetnarski
,
R. B.
, and
Eslami
,
M. R.
, 2009,
Thermal Stresses—Advanced Theory and Applications
,
Springer
,
New York
.
You do not currently have access to this content.