We experimentally studied the propagation of coupled fluid stress waves and tube flexural waves generated through projectile impact along the axis of a water-filled tube. We tested mild steel tubes, 38–40 mm inner diameter and wall thicknesses of 0.8 mm, 6.4 mm, and 12.7 mm. A steel impactor was accelerated using an air cannon and struck a polycarbonate buffer placed on top of the water surface within the tube. Elastic flexural waves were observed for impact speeds of 5–10 m/s and plastic waves appeared for impact speeds approaching 20 m/s for a 0.8 mm thickness tube. We observed primary wave speeds of 1100 m/s in a 0.8 mm thickness tube, increasing to the water sound speed with 6.4 mm and 12.7 mm thickness tubes. Comparison of our measurements in the 0.8 mm thickness tube with Skalak’s water hammer theory indicates reasonable agreement between the predicted and measured peak strains as a function of the impact buffer speed (1956, “An Extension to the Theory of Water Hammer,” Trans. ASME, 78, pp. 105–116). For thick-walled tubes, the correlation between the experimentally determined peak pressures and strains reveals the importance of corrections for the through-wall stress distribution.

1.
Cole
,
R.
, 1965,
Underwater Explosions
,
Dover
,
New York
.
2.
UER
, 1950, “
Underwater Explosion Research: A Compendium of the British and American Reports, Vol. I—The Shock Wave, Vol. II—The Gas Globe, Vol. III—The Damage Process
,” Office of Naval Research Technical Report.
3.
Kedrinsky
,
V.
, 2005,
Hydrodynamics of Explosion
,
Springer
,
New York
.
4.
Trevena
,
D.
, 1987,
Cavitation and Tension in Liquids
,
Hilger
,
London
.
5.
Skews
,
B.
,
Kosing
,
E.
, and
Hattingh
,
R.
, 2004, “
Use of a Liquid Shock Tube as a Device for the Study of Material Deformation Under Impulsive Loading Conditions
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
218
, pp.
39
51
.
6.
Deshpande
,
V. S.
,
Heaver
,
A.
, and
Fleck
,
N. A.
, 2006, “
An Underwater Shock Simulator
,”
Proc. R. Soc. London, Ser. A
0950-1207,
462
, pp.
1021
1041
.
7.
Espinosa
,
H.
,
Lee
,
S.
, and
Moldovan
,
N.
, 2006, “
A Novel Fluid Structure Interaction Experiment to Investigate Deformation of Structural Elements Subjected to Impulsive Loading
,”
Exp. Mech.
0014-4851,
46
, pp.
805
824
.
8.
Korteweg
,
D.
, 1878, “
Über die fortphlanzungsgeschwindigkeit des schalles in elastisches rohren
,”
Ann. Phys. Chem.
0003-3804,
241
, pp.
525
542
.
9.
Joukowsky
,
N.
, 1900, “
Über den hydraulischen stoss in wasserleitungsrohren
,”
St. Petersburg: Memoires de l’Aacademie Imperiale des Sciences
,
8th Series
, Vol.
IX
, No. 5.
10.
Wiggert
,
D. C.
, and
Tijsseling
,
A. S.
, 2001, “
Fluid Transients and Fluid-Structure Interaction in Flexible Liquid-Filled Piping
,”
Appl. Mech. Rev.
0003-6900,
54
(
5
), pp.
455
481
.
11.
Fuller
,
C. R.
, and
Fahy
,
F. J.
, 1982, “
Characteristics of Wave Propagation and Energy Distributions in Cylindrical Elastic Shells Filled With Fluid
,”
J. Sound Vib.
0022-460X,
81
, pp.
501
518
.
12.
Sinha
,
B. K.
,
Plona
,
T. J.
,
Kostek
,
S.
, and
Chang
,
S. -K.
, 1992, “
Axisymmetric Wave Propagation in Fluid-loaded Cylindrical Shells
,”
J. Acoust. Soc. Am.
0001-4966,
92
, pp.
1132
1143
.
13.
Pinnington
,
R. J.
, 1997, “
The Axisymmetric Wave Transmission Properties of Pressurized Flexible Tubes
,”
J. Sound Vib.
0022-460X,
204
, pp.
271
289
.
14.
Skalak
,
R.
, 1956, “
An Extension to the Theory of Water Hammer
,”
Trans. ASME
0097-6822,
78
, pp.
105
116
.
15.
Wylie
,
E. B.
, and
Streeter
,
V. L.
, 1993,
Fluid Transients in Systems
,
Prentice-Hall, Inc.
,
Englewood Cliffs, NJ
.
16.
Tijsseling
,
A. S.
, 1996, “
Fluid-Structure Interaction in Liquid-Filled Pipe Systems: A Review
,”
J. Fluids Struct.
0889-9746,
10
, pp.
109
146
.
17.
Tijsseling
,
A. S.
, 2003, “
Exact Solution of Linear Hyperbolic Four-Equation System in Axial Liquid-Pipe Vibration
,”
J. Fluids Struct.
0889-9746,
18
, pp.
179
196
.
18.
Li
,
Q. S.
,
Yang
,
K.
, and
Zhang
,
L.
, 2003, “
Analytical Solution for Fluid-Structure Interaction in Liquid-Filled Pipes Subjected to Impact-Induced Water Hammer
,”
J. Eng. Mech.
0733-9399,
129
(
12
), pp.
1408
1417
.
19.
Tijsseling
,
A. S.
,
Lambert
,
M. F.
,
Simpson
,
A. R.
,
Stephens
,
M. L.
,
Vítkwský
,
J. P.
, and
Bergant
,
A.
, 2008, “
Skalak’s Extended Theory of Water Hammer
,”
J. Sound Vib.
0022-460X,
310
, pp.
718
728
.
20.
Meyers
,
M. A.
, 1994,
Dynamic Behavior of Materials
,
Wiley
,
New York
.
21.
Fowles
,
G. R.
, 1960, “
Attenuation of a Shock Wave Produced in a Solid by a Flying Plate
,”
J. Appl. Phys.
0021-8979,
31
, pp.
655
661
.
22.
Watters
,
G. Z.
, 1984,
Analysis and Control of Unsteady Flow in Pipelines
,
Butterworth
,
Washington, DC
.
23.
Tijsseling
,
A. S.
, 2007, “
Water Hammer With Fluid-Structure Interaction in Thick-Walled Pipes
,”
Comput. Struct.
0045-7949,
85
, pp.
844
851
.
You do not currently have access to this content.