A simple and systematic procedure is proposed for shakedown analysis using a combination of linear and nonlinear finite element analysis (FEA). The method can identify the boundary between the shakedown and ratcheting domains directly and does not require a cyclic analysis (noncyclic). The proposed method performs an elastic-plastic FEA to determine the reduction in load carrying capacity due to the cyclic secondary loads. An elastic modulus adjustment procedure is then used to generate statically admissible stress distributions and kinematically admissible strain distributions under the applied primary loads. By modifying the local elastic moduli it is possible to obtain inelastic-like stress redistribution. The method is demonstrated with a “two-bar structure” model based on analytical routine. The analysis is then applied to some typical shakedown problems including the “classical Bree problem,” the “bimaterial cylinder,” and the “plate with a hole subjected to radial temperature gradient.”

1.
ASME
, 2007,
Boiler and Pressure Vessel Code
,
American Society of Mechanical Engineers
,
New York
.
2.
ASME
, 2007,
B31.1 Power Piping
,
American Society of Mechanical Engineers
,
New York
.
3.
Reinhardt
,
W.
, 2003, “
Distinguishing Ratcheting and Shakedown Conditions in Pressure Vessels
,”
ASME PVP Conference
, Cleveland, OH, Vol.
458
, pp.
13
26
.
4.
Mackenzie
,
D.
, and
Boyle
,
J. T.
, 1993, “
A Simple Method for Estimating Shakedown Load for Complex Structures
,”
ASME PVP Conference
, Denver, CO, Vol.
265
, pp.
89
94
.
5.
Seshadri
,
R.
, 1994, “
Residual Stress Estimation and Shakedown Evaluation Using GLOSS Analysis
,”
ASME J. Pressure Vessel Technol.
0094-9930,
116
, pp.
290
294
.
6.
Abdalla
,
H. F.
,
Megahed
,
M. M.
, and
Younan
,
M. Y. A.
, 2007, “
A Simplified Technique for Shakedown Limit Load Determination
,”
Nucl. Eng. Des.
0029-5493,
237
, pp.
1231
1240
.
7.
Melan
,
E.
, 1938, “
Zur Plastizität des Räumlichen Kontinuums
,”
Ing.-Arch.
0020-1154,
9
, pp.
116
126
.
8.
Koiter
,
W. T.
, 1960, “
General Theorems of Elastic-Plastic Solids
,”
Progress in Solid Mechanics
,
J. N.
Sneddon
and
R.
Hill
, eds.,
North Holland Publishing Co.
,
Amsterdam
, Vol.
1
, pp.
167
221
.
9.
Chen
,
H.
, and
Ponter
,
A. R. S.
, 2001, “
A Method for the Evaluation of a Ratchet Limit and the Amplitude of Plastic Strain for Bodies Subjected to Cyclic Loading
,”
Eur. J. Mech. A/Solids
0997-7538,
20
, pp.
555
571
.
10.
Kalnins
,
A.
, 2002, “
Shakedown and Ratcheting Directives of ASME B&PV Code and Their Execution
,”
ASME PVP Conference
, Vancouver, BC, Canada, Vol.
439
, pp.
47
55
.
11.
Reinhardt
,
W.
, 2008, “
A Non-Cyclic Method for Plastic Shakedown Analysis
,”
ASME J. Pressure Vessel Technol.
0094-9930,
130
(
3
), p.
031209
.
12.
Bree
,
J.
, 1967, “
Elastic-Plastic Behaviour of Thin Tubes Subjected to Internal Pressure and Intermittent High Heat Fluxes With Application to Fast Nuclear Reactor Fuel Elements
,”
J. Strain Anal.
0022-4758,
2
, pp.
226
238
.
13.
Adibi-Asl
,
R.
, 2008, “
Simplified Limit Load Determination for Integrity Assessment
,” Ph.D. thesis, Memorial University, St. John, NL, Canada.
14.
Calladine
,
C. R.
, 2000,
Plasticity for Engineers: Theory and Applications
,
Horwood
,
Chichester, UK
.
15.
Jones
,
G. L.
, and
Dhalla
,
A. K.
, 1981, “
Classification of Clamp Induced Stresses in Thin Walled Pipe
,”
ASME PVP Conference
, Vol.
81
, pp.
17
23
.
16.
Reinhardt
,
W. D.
, and
Mangalaramanan
,
S. P.
, 2001, “
Efficient Tubesheet Design Using Repeated Elastic Limit Analysis Technique
,”
ASME J. Pressure Vessel Technol.
0094-9930,
123
, pp.
197
202
.
17.
Pan
,
L.
, and
Seshadri
,
R.
, 2002, “
Limit Loads for Layered Structures Using Extended Variational Principles and Repeated Elastic Finite Element Analysis
,”
ASME J. Pressure Vessel Technol.
0094-9930,
124
, pp.
425
432
.
18.
Adibi-Asl
,
R.
, and
Seshadri
,
R.
, 2006, “
Elastic Modulus Adjustment Procedures (EMAP) in Metal Forming Analysis
,”
Trans. Can. Soc. Mech. Eng.
0315-8977,
30
, pp.
239
161
.
19.
Seshadri
,
R.
, and
Mangalaramanan
,
S. P.
, 1997, “
Lower Bound Limit Load Using Variational Concepts: The mα-Method
,”
Int. J. Pressure Vessels Piping
0308-0161,
71
, pp.
93
106
.
20.
Adibi-Asl
,
R.
,
Fanous
,
I. F. Z.
, and
Seshadri
,
R.
, 2006, “
Elastic Modulus Adjustment Procedures-Improved Convergence Schemes
,”
Int. J. Pressure Vessels Piping
0308-0161,
83
, pp.
154
160
.
21.
Gokhfeld
,
D. A.
, and
Cherniavsky
,
O. F.
, 1980,
Limit Analysis of Structures at Thermal Cycling
,
Sijthoff and Nordhoff
,
Alphen aan den Rijn, The Netherlands
.
22.
Mulcahy
,
T. M.
, 1976, “
Thermal Ratchetting of a Beam Element Having an Idealized Bauschinger Effect
,”
ASME J. Eng. Mater. Technol.
0094-4289,
98
, pp.
264
271
.
23.
Megahed
,
M. M.
, 1981, “
Influence of Hardening Rule on the Elasto-Plastic Behaviour of a Simple Structure Under Cyclic Loading
,”
Int. J. Mech. Sci.
0020-7403,
23
, pp.
169
182
.
24.
ANSYS, Inc.
, 2005, Release 10.0 Theory Reference, ANSYS Inc., Canonsburg, PA.
25.
Reinhardt
,
W.
, 2008, “
On the Interaction of Thermal Membrane and Thermal Bending Stress in Shakedown Analysis
,”
ASME PVP Conference
, Chicago, IL, Paper No. PVP2008-61628.
You do not currently have access to this content.