Based upon the kinematic theorem of Koiter (1960, “General Theorems for Elastic Plastic Solids,” in Progress in Solid Mechanics 1, J. N. Sneddon and R. Hill, eds., North-Holland, Amsterdam, pp. 167–221) the linear matching method (LMM) procedure has been proved to produce very accurate upper bound shakedown limits. This paper presents a recently developed LMM lower bound procedure for shakedown analysis of structures with temperature-dependent yield stress, which is implemented into ABAQUS using the same procedure as for upper bounds. According to the Melan’s theorem (1936, “Theorie statisch unbestimmter Systeme aus ideal-plastichem Baustoff,” Sitzungsber. Akad. Wiss. Wien, Math.-Naturwiss. Kl., Abt. 2A, 145, pp. 195–210), a direct algorithm has been carried out to determine the lower bound of shakedown limit using the best residual stress field calculated during the LMM upper bound procedure with displacement-based finite elements. By checking the yield condition at every integration point, the lower bound is calculated by the obtained static field at each iteration, with the upper bound given by the obtained kinematic field. A number of numerical examples confirm the applicability of this procedure and ensure that the upper and lower bounds are expected to converge to the theoretical solution after a number of iterations.

1.
Koiter
,
W. T.
, 1960, “
General Theorems for Elastic Plastic Solids
,”
Progress in Solid Mechanics 1
,
J. N.
Sneddon
and
R.
Hill
, eds.,
North-Holland
,
Amsterdam
, pp.
167
221
.
2.
Polizzotto
,
C.
, 1993, “
On the Conditions to Prevent Plastic Shakedown of Structures: Part I—Theory
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
60
, pp.
15
19
.
3.
Nguyen
,
T.
,
et al.
, 2003, “
Determination of the Stabilized Response of a Structure Undergoing Cyclic Thermal-Mechanical Loads by a Direct Cyclic Method
,”
ABAQUS Users’ Conference Proceedings
.
4.
ABAQUS
, 2007, User’s Manual, Version 6.7.
5.
Bree
,
J.
, 1989, “
Plastic Deformation of a Closed Tube Due to Interaction of Pressure Stresses and Cyclic Thermal Stresses
,”
Int. J. Mech. Sci.
0020-7403,
31
, pp.
865
892
.
6.
Liu
,
Y. H.
,
Carvelli
,
V.
, and
Maier
,
G.
, 1997, “
Integrity Assessment of Defective Pressurized Pipelines by Direct Simplified Methods
,”
Int. J. Pressure Vessels Piping
0308-0161,
74
, pp.
49
57
.
7.
Vu
,
D. K.
,
Yan
,
A. M.
, and
Nguyen-Dang
,
H.
, 2004, “
A Primal-Dual Algorithm for Shakedown Analysis of Structures
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
, pp.
4663
4674
.
8.
Staat
,
M.
, and
Heitzer
,
M.
, 2001, “
LISA a European Project for FEM-based Limit and Shakedown Analysis
,”
Nucl. Eng. Des.
0029-5493,
206
, pp.
151
166
.
9.
Seshadri
,
R.
, 1995, “
Inelastic Evaluation of Mechanical and Structural Components Using the Generalized Local Stress Strain Method of Analysis
,”
Nucl. Eng. Des.
0029-5493,
153
, pp.
287
303
.
10.
Mackenzie
,
D.
,
Boyle
,
J. T.
,
Hamilton
,
R.
, and
Shi
,
J.
, 1996, “
Elastic Compensation Method in Shell-Based Design by Analysis
,”
PVP
,
338
, pp.
203
208
.
11.
Mackenzie
,
D.
,
Boyle
,
J. T.
, and
Hamilton
,
R.
, 2000, “
The Elastic Compensation Method for Limit and Shakedown Analysis: A Review
,”
J. Strain Anal. Eng. Des
,
35
(
3
), pp.
171
188
.
12.
Chen
,
H. F.
, and
Ponter
,
A. R. S.
, 2001, “
Shakedown and Limit Analyses for 3-D Structures Using the Linear Matching Method
,”
Int. J. Press. Vessels Piping
,
78
, pp.
443
451
.
13.
Chen
,
H. F.
, and
Ponter
,
A. R. S.
, 2001, “
A Method for the Evaluation of a Ratchet Limit and the Amplitude of Plastic Strain for Bodies Subjected to Cyclic Loading
,”
Eur. J. Mech. A/Solids
0997-7538,
20
(
4
), pp.
555
571
.
14.
Chen
,
H. F.
,
Ponter
,
A. R. S.
, and
Ainsworth
,
R. A.
, 2006, “
The Linear Matching Method Applied to the High Temperature Life Integrity of Structures, Part 1: Assessments Involving Constant Residual Stress Fields
,”
Int. J. Press. Vessels Piping
,
83
, pp.
123
135
.
15.
Chen
,
H. F.
,
Ponter
,
A. R. S.
, and
Ainsworth
,
R. A.
, 2006, “
The Linear Matching Method Applied to the High Temperature Life Integrity of Structures, Part 2: Assessments Beyond Shakedown Involving Changing Residual Stress Fields
,”
Int. J. Press. Vessels Piping
,
83
, pp.
136
147
.
16.
Chen
,
H. F.
, and
Ponter
,
A. R. S.
, 2006, “
Linear Matching Method on the Evaluation of Plastic and Creep Behaviours for Bodies Subjected to Cyclic Thermal and Mechanical Loading
,”
Int. J. Numer. Methods Eng.
0029-5981,
68
, pp.
13
32
.
17.
Tipping
,
D. J.
, 2007, “
The Linear Matching Method: A Guide to the ABAQUS User Subroutines
,” E/REP/BBGB/0017/GEN/07, British Energy Generation.
18.
British Energy Generation Ltd.
, 2003, “
R5: Assessment Procedure for the High Temperature Response of Structures
,” Issue 3,
R. A.
Ainsworth
, ed.
19.
Ponter
,
A. R. S.
, and
Carter
,
K. F.
, 1997, “
Shakedown State Simulation Techniques Based on Linear Elastic Solutions
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
140
, pp.
259
279
.
20.
Ponter
,
A. R. S.
, and
Engelhardt
,
M.
, 2000, “
Shakedown Limits for a General Yield Condition: Implementation and Application for a Von Mises Yield Condition
,”
Eur. J. Mech. A/Solids
0997-7538,
19
, pp.
423
445
.
21.
Melan
,
E.
, 1936, “
Theorie statisch unbestimmter Systeme aus ideal-plastichem Baustoff
,”
Sitzungsber. Akad. Wiss. Wien, Math.-Naturwiss. Kl., Abt. 2A
0376-2629,
145
, pp.
195
210
.
You do not currently have access to this content.