This paper proposes an analysis of variable amplitude fatigue data obtained for the P355NL1 steel, using a strain-based cumulative damage model. The fatigue data consist of constant and variable amplitude block loading, which was applied to both smooth and notched specimens, previously published by the authors. The strain-based cumulative damage model, which has been proposed by D.L. DuQuesnay, is based on the growth and closure mechanisms of microcracks. It incorporates a parameter termed net effective strain range, which is a function of the microcrack closure behavior and inherent ability to resist fatigue damage. A simplified version of the model is considered, which assumes crack closure at the lowest level for the entire spectrum and does not account for varying crack opening stresses. In general, the model produces conservative predictions within an accuracy range of two on lives, for both smooth and notched geometries, demonstrating the robustness of the model.

1.
European Committee for Standardization-CEN
, 2002, “
EN 13445: Unfired Pressure Vessels
,” European Standard, Brussels.
2.
Miner
,
M. A.
, 1945, “
Cumulative Damage in Fatigue
,”
ASME J. Appl. Mech.
0021-8936,
67
, pp.
A159
A169
.
3.
Pereira
,
H. F. G. S.
,
De Jesus
,
A. M. P.
,
Fernandes
,
A. A.
, and
Ribeiro
,
A. S.
, 2008, “
Analysis of Fatigue Damage Under Block Loading in a Low Carbon Steel
,”
Strain
,
44
, pp.
429
439
. 0039-2103
4.
Pereira
,
H. F. G. S.
,
De Jesus
,
A. M. P.
,
Fernandes
,
A. A.
, and
Ribeiro
,
A. S.
, 2009, “
Cyclic and Fatigue Behavior of the P355NL1 Steel Under Block Loading
,”
ASME J. Pressure Vessel Technol.
0094-9930,
131
(
2
), pp.
021210(1)
021210(9)
.
5.
Pereira
,
H. F. G. S.
,
De Jesus
,
A. M. P.
,
Ribeiro
,
A. S.
, and
Fernandes
,
A. A.
, 2009, “
Fatigue Damage Behavior of a Structural Component Made of P355NL1 Steel Under Block Loading
,”
ASME J. Pressure Vessel Technol.
0094-9930,
131
(
2
), pp.
021407(1)
021407(9)
.
6.
Manson
,
S. S.
, and
Halford
,
G. R.
, 1986, “
Re-Examination of Cumulative Fatigue Damage Analysis-an Engineering Perspective
,”
Eng. Fract. Mech.
0013-7944,
25
, pp.
539
571
.
7.
Fatemi
,
A.
, and
Yang
,
L.
, 1998, “
Cumulative Fatigue Damage and Life Prediction Theories: A Survey of the State of the Art for Homogeneous Materials
,”
Int. J. Fatigue
0142-1123,
20
(
1
), pp.
9
34
.
8.
Schijve
,
J.
, 2003, “
Fatigue of Structures and Materials in the 20th Century and the State of the Art
,”
Mater. Sci.
0137-1339,
39
(
3
), pp.
307
333
.
9.
DuQuesnay
,
D. L.
,
MacDougall
,
C.
,
Dabayeh
,
A.
, and
Topper
,
T. H.
, 1995, “
Notch Fatigue Behaviour as Influenced by Periodic Overloads
,”
Int. J. Fatigue
0142-1123,
17
(
2
), pp.
91
99
.
10.
DuQuesnay
,
D. L.
, 2002, “
Applications of Overload Data to Fatigue Analysis and Testing
,”
Application of Automation Technology in Fatigue and Fracture Testing and Analysis
, Vol.
4
,
A. A.
Braun
.,
P. C.
McKeighan
,
A. M.
Nicolson
, and
R. D.
Lohr
, eds.,
American Society for Testing and Materials
,
West Conshohocken, PA
, pp.
165
180
.
11.
Lynn
,
A. K.
, and
DuQuesnay
,
D. L.
, 2002, “
Computer Simulation of Variable Amplitude Fatigue Crack Initiation Behaviour Using a New Strain-Based Cumulative Damage Model
,”
Int. J. Fatigue
0142-1123,
24
, pp.
977
986
.
12.
DuQuesnay
,
D. L.
,
Topper
,
T. H.
,
Yu
,
M. T.
, and
Pompetzki
,
M. A.
, 1992, “
The Effective Stress Range as a Mean Stress Parameter
,”
Int. J. Fatigue
0142-1123,
14
(
1
), pp.
45
50
.
13.
Vormwald
,
M.
, 1991, “
The Consequences of Short Crack Closure on Fatigue Crack Growth Under Variable Amplitude Loading
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
14
(
2/3
), pp.
205
225
.
14.
Vormwald
,
M.
,
Heuler
,
P.
, and
Krae
,
C.
, 1994, “
Spectrum Fatigue Life Assessment of Notched Specimens Using a Fracture Mechanics Based Approach
,”
ASTM Spec. Tech. Publ.
0066-0558,
1231
, pp.
221
240
.
15.
Pereira
,
H. F. G. S.
, 2006, “
Fatigue Behaviour of Structural Components under Variable Amplitude Loading
,” MSc thesis, FEUP, Porto, Portugal.
16.
De Jesus
,
A. M. P.
,
Ribeiro
,
A. S.
, and
Fernandes
,
A. A.
, 2006, “
Low and High Cycle Fatigue and Cyclic Elastoplastic Behaviour of the P355NL1 Steel
,”
ASME J. Pressure Vessel Technol.
0094-9930,
128
(
3
), pp.
298
304
.
17.
Lam
,
T. S.
,
Topper
,
T. H.
, and
Conle
,
F. A.
, 1998, “
Derivation of Crack Closure and Crack Growth Rate Data From Effective-Strain Fatigue Lifedata for Fracture Mechanics Fatigue Life Predictions
,”
Int. J. Fatigue
0142-1123,
20
(
10
), pp.
703
710
.
18.
Dowling
,
N. E.
, 1999,
Mechanical Behaviour of Materials
, 2nd ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.