A compendium of mechanical properties of carbon and low alloy steels following hydrogen exposure has been assembled from literature sources. The property sets include yield strength, ultimate tensile strength, uniform elongation, reduction in area, threshold stress intensity factor, fracture toughness, and fatigue crack growth. These properties are from literature sources under a variety of test methods and conditions. The collection of literature data is by no means complete, but the diversity of data and dependency of results on test method are sufficient to warrant a design and implementation of a standardized test program. The program would be needed to enable a defensible demonstration of structural integrity of a pressurized hydrogen system. It is essential that the environmental variables be well-defined (e.g., the applicable hydrogen gas pressure range and the test strain rate) and the specimen preparation be realistically consistent (such as the techniques to charge hydrogen and to maintain the hydrogen concentration in the specimens).

1.
2004,
Specification for Line Pipe, API Specification 5L
, 43rd ed.,
American Petroleum Institute
,
Washington, DC
.
2.
Kimura
,
H.
,
Matsui
,
H.
,
Kimura
,
A.
,
Kimura
,
T.
, and
Oguri
,
K.
, 1981, “
Softening and Hardening in High Purity Iron and Its Alloys Charged With Hydrogen
,”
Hydrogen Effects in Metals
,
I. M.
Bernstein
and
A. W.
Thompson
, eds.,
The Metallurgical Society of American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME)
,
New York, NY
, pp.
191
208
.
3.
Jewett
,
R. P.
,
Walter
,
R. J.
,
Chandler
,
W. T.
, and
Frohmberg
,
R. P.
, 1973, “
Hydrogen Environment Embrittlement of Metals
,” Rocketdyne, Division of North American Rockwell, Canoga Park, CA,
NASA
Contractor Report No. NASA CR-2163.
4.
Hofmann
,
W.
, and
Rauls
,
W.
, 1961, “
Erzeugung von Fischaugen in Stahl durch aussere Einwirkung von Wasserstoff bei Raumtemperatur
,”
Archiv für das Eisenhüttenwesn
,
32
, p.
169
171
.
5.
Hofmann
,
W.
, and
Rauls
,
W.
, 1962, “
Neue Beobachtungen zur Versprodung von Stahl durch Wasserstoffeinwirkung bei Raumtemperatur
,”
Dechema Monograph
,
45
, p.
33
.
6.
Hofmann
,
W.
and
Rauls
,
W.
, 1965, “
Ductility of Steel Under the Influence of External High Pressure Hydrogen (Hydrogen Embrittlement of Plain Steel and Armco Iron)
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
44
, pp.
225
-S–230-
S
.
7.
Walter
,
R. J.
, and
Chandler
,
W. T.
, 1969, “
Effects of High-Pressure Hydrogen on Metals at Ambient Temperature
,” Rocketdyne, North American Rockwell Corp., Canoga Park, CA, Report No. R-7780-1, available through U.S. Department of Commerce, National Technical Information Service, N70-18637.
8.
Ellis
,
M. B. D.
,
Bartlett
,
R. A.
, and
Knott
,
J. F.
, 1990, “
Effects of Prestrain and Dissolved Hydrogen on the Tensile Properties and the Fracture Behavior of Line-Pipe Steels
,”
Hydrogen Effects on Material Behavior
,
N. R.
Moody
and
A. W.
Thompson
, eds.,
The Minerals, Metals, and Materials Society
,
Warrendale, PA
, pp.
991
1002
.
9.
Pussegoda
,
L. N.
, and
Tyson
,
W. R.
, 1981, “
Relationship Between Microstructure and Hydrogen Susceptibility of Some Low Carbon Steels
,”
Hydrogen Effects in Metals
,
I. M.
Bernstein
and
A. W.
Thompson
, eds.,
The Metallurgical Society of American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME)
,
New York, NY
, pp.
349
360
.
10.
Christenson
,
D. J.
,
Berstein
,
I. M.
,
Thompson
,
A. W.
,
Danielson
,
E. J.
,
Elices
,
M.
, and
Gutierrez-Solana
,
F.
, 1980, “
Hydrogen Compatibility of a Line Pipe Steel
,”
Hydrogen Effects in Metals
,
I. M.
Bernstein
and
A. W.
Thompson
, eds.,
The Metallurgical Society of American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME)
,
New York, NY
, pp.
997
1004
.
11.
Gutierrez-Solana
,
F.
, and
Elices
,
M.
, 1982, “
High-Pressure Hydrogen Behavior of a Pipeline Steel
,”
Current Solutions to Hydrogen Problems in Steels
,
C. G.
Interrante
and
G. M.
Pressouyre
, eds.,
American Society for Metals
,
Metals Park, OH
, pp.
181
185
.
12.
Cialone
,
H. J.
, and
Holbrook
,
J. H.
, 1988, “
Sensitivity of Steels to Degradation in Gaseous Hydrogen
,”
Hydrogen Embrittlement: Prevention and Control, ASTM STP 962
,
L.
Raymond
, ed.,
American Society for Testing and Materials
,
Philadelphia, PA
, pp.
134
152
.
13.
Holbrook
,
J. H.
,
Cialone
,
H. J.
,
Mayfield
,
M. E.
, and
Scott
,
P. M.
, 1982, “
The Effect of Hydrogen on Low-Cycle-Fatigue and Subcritical Crack Growth in Pipeline Steels
,” Battelle Columbus Laboratories, Columbus, OH, available through U.S. Department of Commerce, National Technical Information Service, DE85006685.
14.
Duncan
,
A. J.
,
Lam
,
P. -S.
, and
Adams
,
T. M.
, 2007, “
Tensile Testing of Carbon Steel in High Pressure Hydrogen
,”
Proceedings of ASME Pressure Vessels and Piping Conference
, San Antonio, TX, Paper No. PVP2007-26736.
15.
Loginow
,
A. W.
, and
Phelps
,
E. H.
, 1975, “
Steels for Seamless Hydrogen Pressure Vessels
,”
Corrosion (Houston)
0010-9312,
31
(
11
), pp.
404
412
.
16.
Robinson
,
S. L.
, and
Stoltz
,
R. E.
, 1981, “
Toughness Losses and Fracture Behavior of Low Strength Carbon-Manganese Steel in Hydrogen
,”
Hydrogen Effects in Metals
,
I. M.
Bernstein
and
A. W.
Thompson
, eds.,
The Metallurgical Society of American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME)
,
New York, NY
, pp.
987
993
.
17.
Paris
,
P. C.
,
Tada
,
H.
,
Zahoor
,
A.
, and
Ernst
,
H.
, 1979, “
The Theory of Instability of the Tearing Mode of Elastic-Plastic Crack Growth
,”
Elastic-Plastic Fracture, ASTM STP 668
,
J. D.
Landes
,
J. A.
Begley
, and
G. A.
Clarke
, eds.,
American Society for Testing and Materials
,
Philadelphia, PA
, pp.
5
36
.
18.
Duncan
,
A. J.
,
Adams
,
T. M.
, and
Lam
,
P. S.
, 2009, “
Fracture Property Testing of Carbon Steel in High Pressure Hydrogen
,”
Proceedings of ASME Pressure Vessels and Piping Conference
, Prague, Czech Republic, Paper No. PVP2009-78069.
19.
Zawierucha
,
R.
, and
Xu
,
K.
, 2005, “
Hydrogen Pipeline Steels
,”
Proceedings of Materials Science & Technology (MS&T’05)
, pp.
79
90
, http://iweb.tms.org/Purchase/ProductDetail.aspx?Product_code=08-0005-CDhttp://iweb.tms.org/Purchase/ProductDetail.aspx?Product_code=08-0005-CD.
20.
American Society for Testing and Materials
, ASTM E 1820, Standard Test Method for Measurement of Fracture Toughness.
21.
Barsom
,
J. M.
, and
Rolfe
,
S.
, 1999,
Fracture and Fatigue Control in Structures: Applications of Fracture Mechanics
, 3rd ed.,
American Society for Testing and Materials
,
West Conshohocken, PA
, p.
119
.
22.
Walter
,
R. J.
, and
Chandler
,
W. T.
, 1976, “
Cyclic-Load Crack Growth in ASME SA-105 Grade II Steel in High-Pressure Hydrogen at Ambient Temperature
,”
Effect of Hydrogen on Behavior of Materials
,
A. W.
Thompson
and
I. M.
Bernstein
, eds.,
The Metallurgical Society of American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME)
,
New York, NY
, pp.
273
286
.
23.
Paris
,
P. C.
,
Gomez
,
M. P.
, and
Anderson
,
W. P.
, 1961, “
A Rational Analytic Theory of Fatigue
,”
The Trend in Engineering
,
13
, pp.
9
14
.
24.
Paris
,
P. C.
, and
Erdogan
,
F.
, 1960, “
A Critical Analysis of Crack Propagation Laws
,”
ASME J. Basic Eng.
0021-9223,
85
, pp.
528
534
.
25.
Elber
,
W.
, 1971, “
The Significance of Fatigue Crack Closure
,”
Damage Tolerance in Aircraft Structures, ASTM STP 486
,
American Society for Testing and Materials
,
Philadelphia, PA
, pp.
230
242
.
You do not currently have access to this content.