Hydrogen assisted cracking (HAC) has been investigated in a high strength 4140 steel and a low strength AISI-SAE grade 1022 steel (supplied by Amoco, Naperville, IL—now BP), charged at 50mA/cm2 in 1N H2SO4+25mg/lAs2O3 and tested under three-point-bend decreasing load. The HAC growth rate for the 1022 steel (1.4×107cm/s) was found to be approximately two orders of magnitude slower than that of the 4140 steel (3.3×105cm/s), while the threshold stress intensity factor for the 1022 steel (37.0±1.0MPam1/2) was significantly higher than that of the 4140 steel (7.0±0.5MPam1/2). This research develops an analytical model, based on the hypothesis that hydrogen both reduces crack resistance (R) and increases crack driving force (G), to explain HAC in 4140 and 1022 steels. The model predicts the hydrogen concentration required to initiate HAC as a function of the applied stress intensity factor and yield strength of the steel. Hydrogen-induced reduction in R was found to dominate HAC in the 4140 steel, while hydrogen-induced reduction in R was combined with an increase in G for HAC cracking of the 1022 steel.

1.
Bernstein
,
I. M.
, 1970, “
The Role of Hydrogen in the Embrittlement of Iron and Steel
,”
Mater. Sci. Eng.
0025-5416,
6
, pp.
1
19
.
2.
Burk
,
J. D.
, 1993, “
Hydrogen-Induced Cracking in Surface Production Systems: Mechanism, Inspection, Repair, and Prevention
,”
Society of Petroleum Engineers of AIME
,
1
, pp.
559
568
.
3.
Gonzales
,
J. L.
,
Ramirez
,
J. M.
,
Hallen
,
J. M.
, and
Guzman
,
R. A.
, 1997, “
Hydrogen-Induced Crack Growth Rate in Steel Plates Exposed to Sour Environments
,”
Corrosion (Houston)
0010-9312,
53
(
12
), pp.
935
943
.
4.
Hobson
,
J. D.
, and
Sykes
,
C.
, 1951, “
Effect of Hydrogen on the Properties of Low-Alloy Steel
,”
J. Iron Steel Inst., London
0021-1567,
169
, pp.
209
215
.
5.
Kermani
,
M. B.
, 1995,
Hydrogen Transport & Cracking in Metals
,
A.
Turnbull
, ed.,
The Institute of Materials
,
London, UK
, p.
l
.
6.
Krom
,
A.
, 1998, Ph.D. thesis, Delft University of Technology, Delft, The Netherlands.
7.
Merrick
,
R. D.
, 1989, “
An Overview of Hydrogen Damage to Steels at Low Temperature
,”
Materials Performance
, Vol.
28
, pp.
53
55
.
8.
Ciaraldi
,
S. W.
, 1992,
Stress-Corrosion Cracking Materials Performance and Evaluation
,
R. H.
Jones
, ed.,
ASM International
,
Materials Park, OH
, p.
41
.
9.
Garber
,
R. I.
,
Bernstein
,
I. M.
, and
Thompson
,
A. W.
, 1976, “
Effect of Hydrogen on Ductile Fracture of Spheroidized Steel
,”
Scr. Metall.
0036-9748,
10
, pp.
341
345
.
10.
Brouwer
,
R. C.
, 1995, “
Predicting Hydrogen Induced Crack Growth Rates in Pipelines and Pressure Vessels
,”
Hydrogen Transport & Cracking in Metals
,
A.
Turnbull
, ed.,
The Institute of Materials
,
London, UK
, p.
62
.
11.
Lee
,
T. D.
,
Goldenberg
,
T.
, and
Hirth
,
J. P.
, 1979, “
Effect of Hydrogen on Fracture of U-Notched Bend Specimens of Spheroidized AISI 1095 Steels
,”
Metall. Trans. A
0360-2133,
10A
, pp.
199
208
.
12.
Lee
,
T. D.
,
Goldenberg
,
T.
, and
Hirth
,
J. P.
, 1979, “
Effect of Hydrogen on Fracture of U-Notched Bend Specimens of Quenched and Tempered AISI 4340 Steel
,”
Metall. Trans. A
0360-2133,
10A
, pp.
439
448
.
13.
Shewmon
,
P. G.
, 1985, “
Hydrogen Attack of Pressure Vessel Steels
,”
Mater. Sci. Technol.
0267-0836,
1
, pp.
2
11
.
14.
Ford
,
F. P.
, 1988, “
Status of Research on Environmentally Assisted Cracking in Pressure Vessel Steels
,”
ASME J. Pressure Vessel Technol.
0094-9930,
110
, pp.
113
128
.
15.
Ribble
,
J. P.
,
Kane
,
R. D.
, and
Chakachery
,
E. A.
, 1991, “
The Effect of Metallurgical and Environmental Variables on Hydrogen Induced Cracking in Steels
,”
Mechanical Working and Steel Processing Conference Proceedings
,
Iron and Steel Society of AIME
,
Pittsburgh, PA
, Vol.
28
, pp.
499
505
.
16.
St. John
,
C.
, and
Gerberich
,
W. W.
, 1973, “
The Effect of Loading Mode on Hydrogen Embrittlement
,”
Metall. Trans.
0026-086X,
4
, pp.
589
594
.
17.
ASTM Standard E399 Standard Test Method, 1993, “
Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials
,”
ASTM 1993
, Vol.
3.01
, pp.
509
.
18.
Terthewey
,
K. R.
, and
Chamberlain
,
J.
, 1995,
Corrosion for Science and Engineering
, 2nd ed.,
Pearson Longman
,
London, UK
.
19.
Bockris
,
J. O’M.
,
McBreen
,
J.
, and
Nanis
,
L.
, 1965, “
The Hydrogen Evolution Kinetics and Hydrogen Entry Into α-Iron
,”
J. Electrochem. Soc.
0013-4651,
112
(
10
), pp.
1025
1031
.
20.
Hagi
,
H.
, and
Ohtani
,
N.
, 1986, “
Effect of Arsenic on Electrochemical Entry of Hydrogen Into Iron
,”
Trans. Jpn. Inst. Met.
0021-4434,
27
(
4
), pp.
270
278
.
21.
Ishikawa
,
M.
,
Nakatani
,
Y.
, and
Yamada
,
K.
, 1995, “
Mechanistic Aspect of Hydrogen Cracking Process in High Strength Steel
,”
Proceedings of National Physical Laboratory Conference on Hydrogen Transport and Cracking in Metals
, Teddington, UK,
Maney Materials Science
,
London, UK
, p.
95
.
22.
Quadrini
,
E.
, 1989, “
Factors in Hydrogen Embrittlement of High Strength Steels
,”
Mater. Chem. Phys.
0254-0584,
21
(
4
), pp.
437
446
.
23.
Darken
,
L. S.
, and
Smith
,
R. P.
, 1949, “
Behavior of Hydrogen in Steel During and After Immersion in Acid
,”
Corrosion (Houston)
0010-9312
5
(
1
), pp.
1
6
.
24.
Nelson
,
H. G.
, and
Williams
,
D. P.
, 1973,
NACE-5, International Corrosion Conference
,
R. W.
Staehle
,
J.
Hochmann
,
R. D.
McCright
, and
J. E.
Slater
, eds., p.
390
.
25.
Ewalds
,
H. L.
, and
Wanhill
,
R. J. H.
, 1986,
Fracture Mechanics
, 3rd ed.,
Edward Arnold
,
London, UK
.
26.
Oriani
,
R. A.
, and
Josephic
,
P. H.
, 1972, “
Testing of the Cohesion Theory of Hydrogen-Induced Crack Propagation
,”
Scr. Metall.
0036-9748,
6
, pp.
681
687
.
27.
Bastien
,
P.
, and
Azou
,
P.
, 1951, “
Effect of Hydrogen on the Deformation and Fracture of Iron and Steel in Simple Tension
,”
Proceedings of the First World Metallurgical Congress
,
ASM
,
Materials Park, OH
, p.
535
.
28.
Ortiz
,
M.
, and
Ovejero-Garcia
,
J.
, 1992, “
Effect of Hydrogen on Young’s Modulus of AISI 1005 and 1070 Steels
,”
J. Mater. Sci.
0022-2461,
27
(
24
), pp.
6777
6781
.
29.
Broek
,
D.
, 1991,
Elementary Engineering Fracture Mechanics
, 4th ed.,
Kluwer Academic
,
Boston, MA
.
30.
Tada
,
H.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
, 1985,
The Stress Analysis of Cracks Handbook
, 2nd ed.,
Del Research Corporation
,
Hellertown, PA
, p.
2.16
.
31.
Farrel
,
K.
, 1970, “
Cathodic Hydrogen Absorption and Severe Embrittlement in a High Strength Steel
,”
Corrosion
, Vol.
26
,
NACE International
,
Houston, TX
, p.
105
.
32.
Tantaseraneewat
,
S.
, 2000, “
Investigation of Hydrogen Assisted Cracking in Low Strength Pressure Vessel Steels
,” Ph.D. thesis, Metallurgical and Materials Engineering, Illinois Institute of Technology, Chicago, IL.
33.
Gerberich
,
W. W.
, and
Chen
,
Y. T.
, 1974, “
The Effect of Thickness on Hydrogen-Induced Slow Crack Growth
,”
Scr. Metall.
0036-9748,
8
(
3
), pp.
243
248
.
34.
Gerberich
,
W. W.
,
Livne
,
T.
,
Chen
,
X. F.
, and
Kaczorowski
,
M.
, 1988, “
Crack Growth From Internal Hydrogen Temperature and Microstructural Effect in 4340 Steel
,”
Metall. Trans. A
0360-2133,
19
(
5
), pp.
1319
1334
.
35.
Lessar
,
J. F.
, and
Gerberich
,
W. W.
, 1976, “
Grain Size Effects in Hydrogen-Assisted Cracking
,”
Metall. Trans. A
0360-2133,
7
, pp.
953
960
.
36.
Nair
,
S. V.
, and
Tien
,
J. K.
, 1985, “
A Plastic Flow Induced Fracture Theory for KISCC
,”
Metall. Trans. A
0360-2133,
16A
, pp.
2333
2340
.
37.
Oehlert
,
A.
, and
Atrens
,
A.
, 1997, “
Environmental Assisted Fracture for 4340 Steel in Water and Air of Various Humidities
,”
J. Mater. Sci.
0022-2461,
32
, pp.
6519
6523
.
38.
Gerberich
,
W. W.
, and
Chen
,
Y. T.
, 1975, “
Hydrogen-Controlled Cracking—An Approach to Threshold Stress Intensity
,”
Metall. Trans. A
0360-2133,
6
(
2
), pp.
271
278
.
39.
Yamakawa
,
K.
, 1984, “
Critical Hydrogen Content on Hydrogen Embrittlement of High Strength Steels
,”
International Congress on Metallic Corrosion
, Vol.
2
, p.
254
.
40.
Gerberich
,
W. W.
, 1992,
The Effect of Local Dislocation Arrangements on Hydrogen-Induced Cleavage
,
The Minerals, Metal & Materials Society
,
Warrendale, PA
, p.
191
.
41.
Sisak
,
W. J.
, 1985, “
The Role of Microstructure in Hydrogen-Induced Cracking Initiation in High Strength Steels
,” Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA.
42.
Kameda
,
C. J.
, and
Vitek
,
V.
, 1986, “
A Microscopic Model of Hydrogen-Induced Intergranular Cracking—I. Equilibrium Crack Growth
,”
Acta Metall.
0001-6160,
34
(
5
), pp.
867
882
.
43.
Riecke
,
E.
,
Schambil
,
F.
, and
Bohnenkamp
,
K.
, 1980, “
Influence of Microstructure of Iron and Steels on Steady State Hydrogen Permeation
,”
Hydrogen in Metals
,
I. M.
Bernstein
and
A. W.
Thompson
, eds.,
The Metallurgical Society of AIME
,
Warrendale, PA
, p.
97
.
44.
Tau
,
L.
, and
Chan
,
S. L. I.
, 1996, “
Effect of Ferrite/Pearlite Alignment on the Hydrogen Permeation in a AISI 4130 Steel
,”
Mater. Lett.
0167-577X,
29
, pp.
143
147
.
45.
Bockris
,
J. O’M.
,
Beck
,
W.
,
Genshaw
,
M. A.
,
Subramanyan
,
P. K.
, and
Williams
,
F. S.
, 1971, “
The Effect of Stress on the Chemical Potential of Hydrogen in Iron and Steel
,”
Acta Metall.
0001-6160,
19
, pp.
1209
1218
.
46.
Hirth
,
J. P.
, and
Rice
,
J. R.
, 1980, “
On the Thermodynamics of Adsorption at Interfaces as It Influences Decohesion
,”
Metall. Trans. A
0360-2133,
11
, pp.
1501
1511
.
47.
Zhang
,
T. Y.
,
Jiang
,
F. X.
,
Chu
,
W. Y.
, and
Hsiao
,
C. M.
, 1985, “
Effect of Hydrogen on the Young’s Modulus of Iron
,”
Metall. Trans. A
0360-2133,
16A
, pp.
1655
1662
.
48.
Gerberich
,
W. W.
, 1974, “
Effect of Hydrogen on High Strength and Martensitic Steels
,”
Hydrogen in Metals
,
American Society for Metals
,
Metals Park, OH
, p.
115
.
49.
Maier
,
H. J.
,
Popp
,
W.
, and
Kaesche
,
H.
, 1987, “
A Method to Evaluate the Critical Hydrogen Concentration for Hydrogen-Induced Crack Propagation
,”
Acta Metall.
0001-6160,
35
(
4
), pp.
875
880
.
50.
Gerberich
,
W. W.
,
Chen
,
Y. T.
, and
John
,
C. S. T.
, 1975, “
A Short-Time Diffusion Correlation for Hydrogen-Induced Crack Growth Kinetics
,”
Metall. Trans. A
0360-2133,
6A
, pp.
1485
1498
.
51.
Gerberich
,
W. W.
,
Garry
,
J.
, and
Lessar
,
J. F.
, 1975, “
Grain Size and Concentration Effects in Internal and External Hydrogen Embrittlement
,”
Effects of Hydrogen on Behavior of Materials
,
A. W.
Thompson
and
I. M.
Bernstein
, eds.,
The Metallurgical Society of AIME
,
Warrendale, PA
, p.
70
.
52.
Farrell
,
K.
, and
Quarrell
,
A. G.
, 1964, “
Hydrogen Embrittlement of an Ultra-High-Tensile-Steel
,”
J. Iron Steel Inst., London
0021-1567,
202
, pp.
1002
1011
.
53.
Interrante
,
C. G.
, 1982,
Basic Aspects of the Problems of Hydrogen in Steels
,
The American Society for Metals
,
Metals Park, OH
, p.
8
.
54.
Hirth
,
J. P.
, and
Carnahan
,
B.
, 1978, “
Hydrogen Adsorption at Dislocation and Cracks in Fe
,”
Acta Metall.
0001-6160,
26
, pp.
1795
1803
.
55.
Oriani
,
R. A.
, and
Josephic
,
P. H.
, 1979, “
Hydrogen-Enhanced Nucleation of Microcavities in AISI 1045 Steel
,”
Scr. Metall.
0036-9748,
13
, pp.
469
471
.
56.
Nair
,
S. V.
,
Tien
,
J. K.
, and
Bates
,
R. C.
, 1983, “
On the Criteria for Hydrogen Assisted Fracture at the Threshold Stress Intensity
,”
Scr. Metall.
0036-9748,
17
, pp.
639
641
.
57.
Gerberich
,
W. W.
, and
Wright
,
A. G.
, 1981,
Environmental Degradation of Engineering Materials in Hydrogen
,
M. R.
Louthan
,
R. P.
McNitt
, and
R. D.
Sisson
, eds.,
VPI
,
Blacksburg, VA
, p.
183
.
58.
Steigerwald
,
E. A.
,
Schaller
,
F. W.
, and
Troiano
,
A. R.
, 1959, “
Discontinuous Crack Growth in Hydrogenated Steel
,”
Trans. Metall. Soc. AIME
0543-5722,
215
, pp.
1048
1052
.
59.
Steigerwald
,
E. A.
,
Schaller
,
F. W.
, and
Troiano
,
A. R.
, 1960, “
The Role of Stress in Hydrogen Induced Delayed Failure
,”
Trans. Metall. Soc. AIME
0543-5722,
218
(
5
), pp.
832
841
.
You do not currently have access to this content.