Residual stress in the vicinity of a weld can have a large influence on structural integrity. Here the extent to which the martensite-start temperature of the weld filler metal can be adjusted to engineer the residual stress distribution in a bainitic-martensitic steel weld was investigated. Three single-pass groove welds were deposited by manual-metal-arc welding on 12 mm thick steel plates using filler metals designed to have different martensite-start temperatures. Their longitudinal, transverse, and normal residual stress distributions were then characterized across the weld cross section by neutron diffraction. It was found that tensile stresses along the welding direction can be reduced or even replaced with compressive stresses if the transformation temperature is lowered sufficiently. The results are interpreted in the context of designing better welding consumables.

1.
Bhadeshia
,
H. K. D. H.
, 2004, “
Developments in Martensitic and Bainitic Steels—Role of the Shape Deformation
,”
Mater. Sci. Eng., A
0921-5093,
378
, pp.
34
39
.
2.
Withers
,
P. J.
, and
Bhadeshia
,
H. K. D. H.
, 2001, “
Overview—Residual Stress Part 1—Measurement Techniques
,”
Mater. Sci. Technol.
0267-0836,
17
(
4
), pp.
355
365
.
3.
Withers
,
P. J.
, and
Bhadeshia
,
H. K. D. H.
, 2001, “
Overview—Residual Stress Part 2—Nature and Origins
,”
Mater. Sci. Technol.
0267-0836,
17
, pp.
366
375
.
4.
Francis
,
J. A.
,
Bhadeshia
,
H. K. D. H.
, and
Withers
,
P. J.
, 2007, “
Welding Residual Stresses in Ferritic Power Plant Steels
,”
Mater. Sci. Technol.
0267-0836,
23
, pp.
1009
1020
.
5.
Ohta
,
A.
,
Suzuki
,
N.
,
Maeda
,
Y.
,
Hiraoka
,
K.
, and
Nakamura
,
T.
, 1999, “
Superior Fatigue Crack Growth Properties in Newly Developed Weld Metal
,”
Int. J. Fatigue
0142-1123,
21
, pp.
S113
S118
.
6.
Ohta
,
A.
,
Matsuoka
,
K.
,
Nguyen
,
N. T.
,
Maeda
,
Y.
, and
Suzuki
,
N.
, 2003, “
Fatigue Strength Improvement of Lap Joints of Thin Steel Plate Using Low-Transformation-Temperature Welding Wire
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
82
, pp.
78S
83S
.
7.
Wang
,
W. X.
,
Huo
,
L. X.
,
Zhang
,
Y. F.
,
Wang
,
D. P.
, and
Jing
,
H. Y.
, 2002, “
New Developed Welding Electrode for Improving the Fatigue Strength of Welded Joints
,”
J. Mater. Sci. Technol.
0861-9786,
18
, pp.
527
531
.
8.
Lord
,
M.
, 1998, Ph.D. thesis, University of Cambridge, Cambridge, England.
10.
Bhadeshia
,
H. K. D. H.
, 1981, “
A Rationalisation of Shear Transformations in Steels
,”
Acta Metall.
0001-6160,
29
, pp.
1117
1130
.
11.
Bhadeshia
,
H. K. D. H.
, 1982, “
Thermodynamic Analysis of Isothermal Transformation Diagrams
,”
Meat Sci.
0309-1740,
16
, pp.
159
165
.
12.
Hodson
,
S. M.
, 1989,
MTDATA-Metallurgical and Thermochemical Databank
,
National Physical Laboratory
,
Teddington, UK
.
13.
Bhadeshia
,
H. K. D. H.
, 1999, “
Some Phase Transformations in Steels
,”
Mater. Sci. Technol.
0267-0836,
15
, pp.
22
29
.
14.
Bhadeshia
,
H. K. D. H.
, 1981, “
The Driving Force for Martensitic Transformation in Steels
,”
Meat Sci.
0309-1740,
15
, pp.
175
177
.
15.
Tornblom
,
S.
, 2007, “
Undermatching Butt Welds in High Strength Steel
,” MS thesis, Lulea University of Technology, Sweden.
16.
Nevasmaa
,
P.
, 2003, “
Predictive Model for the Prevention of Weld Metal Hydrogen Cracking in High-Strength Multipass Welds
,” Ph.D. thesis, University of Oulu, Finland.
17.
ESAB AB, Central Research Laboratories, Gothenburg, Sweden.
18.
Satoh
,
K.
, 1972, “
Transient Thermal Stresses of Weld Heat-Affected Zone by Both-Ends-Fixed Bar Analogy
,”
Trans. Jpn. Weld. Soc.
0385-9282,
3
, pp.
125
134
.
19.
Satoh
,
K.
, 1972, “
Thermal Stresses Developed in High-Strength Steels Subjected to Thermal Cycles Simulating Weld Heat-Affected Zone
,”
Trans. Jpn. Weld. Soc.
0385-9282,
3
, pp.
135
142
.
20.
Francis
,
J. A.
,
Stone
,
H. J.
,
Kundu
,
S.
,
Rogge
,
R. B.
,
Bhadeshia
,
H. K. D. H.
,
Withers
,
P. J.
, and
Karlsson
,
L.
, 2007 “
Transformation Temperatures and Welding Residual Stresses in Ferritic Steels
,”
Proceedings of the ASME Pressure Vessels and Piping Division Conference (PVP2007)
, San Antonio, TX, July 22–26, Paper No. 26544.
21.
Stone
,
H. J.
,
Withers
,
P. J.
,
Holden
,
T. M.
,
Roberts
,
S. M.
, and
Reed
,
R. C.
, 1999, “
Comparison of Three Different Techniques for Measuring Residual Stresses in an Electron Beam-Welded Plate of Waspaloy
,”
Metall. Mater. Trans. A
1073-5623,
30
, pp.
1797
1808
.
22.
Hutchings
,
M. T.
,
Withers
,
P. J.
,
Holden
,
T. M.
, and
Lorentzen
,
T.
, 2005,
Introduction to the Characterisation of Residual Stresses by Neutron Diffraction
,
Taylor & Francis
,
London
.
23.
Withers
,
P. J.
,
Preuss
,
M.
,
Steuwer
,
A.
, and
Pang
,
J. W. L.
, 2007, “
Methods for Obtaining the Strain-Free Lattice Parameter When Using Diffraction to Determine Residual Stress
,”
J. Appl. Crystallogr.
0021-8898,
40
, pp.
891
904
.
24.
Bhadeshia
,
H. K. D. H.
, and
Honeycombe
,
R. W. K.
, 2006,
Steels: Microstructure and Properties
,
3rd ed.
,
Butterworth
,
Washington, DC
, pp.
287
306
.
25.
Hauk
,
V.
, 1997,
Structural and Residual Stress Analysis by Nondestructive Methods
,
Elsevier
,
New York
.
You do not currently have access to this content.