This paper presents closed form solutions for simply supported cylindrical and spherical shells subjected to uniform localized distributions of transverse pressure and bending moment. These distributions have been expanded in terms of Fourier’s series for which Navier type “exact” solutions have been found for the governing differential equations of the employed shell theories. Shells made of isotropic materials, composites laminates, and sandwich have been analyzed. Carrera’s unified formulation has been adopted in order to implement a large variety of two-dimensional theories. Classical, refined, zigzag, layerwise, and mixed theories are compared in order to evaluate the stress and deformation variables. Conclusions are drawn with respect to the accuracy of the various theories for the considered loadings and layouts. The importance of the refined shell models in order to describe accurately the three-dimensional stress state in the neighborhood of the localized loading application area is outlined.

1.
Timoshenko
,
S. P.
, and
Woinowsky-Krieger
,
S.
, 1959,
Theory of Plates and Shells
,
McGraw-Hill
,
New York
.
2.
Ren
,
G. J.
, 1987, “
Exact Solutions for Laminated Cylindrical Shells in Cylindrical Bending
,”
Compos. Sci. Technol.
0266-3538,
29
, pp.
169
187
.
3.
Kirchhoff
,
G.
, 1850, “
Über das Gleichgewicht und die Bewegung einer elastishen Sceibe
,”
J. Reine Angew. Math.
0075-4102,
40
, pp.
51
88
.
4.
Love
,
A. E. H.
, 1959,
A Treatise on the Mathematical Theory of Elasticity
,
Cambridge University Press
,
Cambridge
.
5.
Ren
,
G. J.
, 1989, “
Analysis of Simply-Supported Laminated Circular Cylindrical Shell Roofs
,”
Compos. Struct.
0263-8223,
11
, pp.
277
292
.
6.
Yuan
,
F. G.
, 1992, “
Exact Solutions for Laminated Composite Cylindrical Shells in Cylindrical Bending
,”
J. Reinf. Plast. Compos.
0731-6844,
11
(
4
), pp.
340
371
.
7.
Varadan
,
T. K.
, and
Bhaskar
,
K.
, 1991, “
Bending of Laminated Orthotropic Cylindrical Shells—An Elasticity Approach
,”
Compos. Struct.
0263-8223,
17
, pp.
141
156
.
8.
Bhaskar
,
K.
, and
Varadan
,
T. K.
, 1993, “
Exact Elasticity Solution for Laminated Anisotropic Cylindrical Shells
,”
ASME J. Appl. Mech.
0021-8936,
60
, pp.
41
47
.
9.
Bhaskar
,
K.
, and
Varadan
,
T. K.
, 1994, “
Benchmark Elasticity Solution for Locally Loaded Laminated Orthotropic Cylindrical Shells
,”
AIAA J.
0001-1452,
32
, pp.
627
632
.
10.
Bhaskar
,
K.
, and
Ganapathysaran
,
N.
, 2003, “
Elasticity Solutions for Laminated Orthotropic Cylindrical Shells Subjected to Localized Longitudinal and Circumferential Moments
,”
ASME J. Pressure Vessel Technol.
0094-9930,
125
, pp.
26
35
.
11.
Bhimaraddi
,
A.
, and
Chandrashekhara
,
K.
, 1992, “
Three-Dimensional Elasticity Solution for Static Response of Simply Supported Orthotropic Cylindrical Shells
,”
Compos. Struct.
0263-8223,
20
, pp.
227
235
.
12.
Chandrashekhara
,
K.
, and
Kumar
,
B. S.
, 1993, “
Static Analysis of Thick Laminated Circular Cylindrical Shells
,”
ASME J. Pressure Vessel Technol.
0094-9930,
115
, pp.
193
200
.
13.
Grigolyuk
,
E. I.
, and
Kulikov
,
G. M.
, 1988, “
General Directions of the Development of the Theory of Shells
,”
Mekh. Kompoz. Mater.
0203-1272,
2
, pp.
287
298
.
14.
Kapania
,
R. K.
, 1989, “
A Review on the Analysis of Laminated Shells
,”
ASME J. Pressure Vessel Technol.
0094-9930,
111
, pp.
88
96
.
15.
Noor
,
A. K.
, and
Burton
,
W. S.
, 1990, “
Assessment of Computational Models for Multilayered Composite Shells
,”
Appl. Mech. Rev.
0003-6900,
43
, pp.
67
97
.
16.
Noor
,
A. K.
,
Burton
,
W. S.
, and
Bert
,
C. W.
, 1996, “
Computational Models for Sandwich Panels and Shells
,”
Appl. Mech. Rev.
0003-6900,
49
, pp.
155
199
.
17.
Carrera
,
E.
, 2002, “
Theories and Finite Elements for Multilayered Plates and Shells
,”
Arch. Comput. Methods Eng.
1134-3060,
9
, pp.
87
140
.
18.
Reddy
,
J. N.
, 1997,
Mechanics of Laminated Composite Plates and Shells. Theory and Analysis
,
CRC
,
Boca Raton, FL
.
19.
Bhimaraddi
,
A.
, 1984, “
A Higher Order Theory for Free Vibration Analysis of Circular Cylindrical Shells
,”
Int. J. Solids Struct.
0020-7683,
20
, pp.
623
630
.
20.
Bhimaraddi
,
A.
, 1987, “
Static and Transient Response of Cylindrical Shells
,”
Thin-Walled Struct.
0263-8231,
5
, pp.
157
179
.
21.
Lindberg
,
G. M.
,
Olson
,
M. D.
, and
Cowper
,
G. R.
, 1969, “
New Developments in the Finite Element Analysis of Shells
,”
Quarterly Bulletin of the Division of Mechanical Engineering and The National Aeronautical Establishment
,
4
, pp.
1
38
.
22.
Heppler
,
G. R.
, and
Hansen
,
J. S.
, 1986, “
A Mindlin Element for Thick and Deep Shells
,”
Comput. Methods Appl. Mech. Eng.
,
54
, pp.
21
47
. 0045-7825
23.
Kulikov
,
G. M.
, and
Plotnikova
,
S. V.
, 2002, “
Simple and Effective Elements Based Upon Timoshenko-Mindlin Shell Theory
,”
Comput. Methods Appl. Mech. Eng.
,
191
, pp.
1173
1187
. 0045-7825
24.
Koiter
,
W. T.
, 1959, “
A Consistent First Approximation in the General Theory of Thin Elastic Shells
,”
Proceedings of the First IUTAM Symposium on the Theory of Thin Elastic Shells
, Delft, The Netherlands, pp.
12
23
.
25.
Carrera
,
E.
, 1999, “
A Study of the Transverse Normal Stress Effect on Vibration of Multilayered Plates and Shells
,”
J. Sound Vib.
0022-460X,
225
(
5
), pp.
803
829
.
26.
Demasi
,
L.
, 2008, “
∞3 Hierarchy Plate Theories for Thick and Thin Composite Plates: The Generalized Unified Formulation
,”
Compos. Struct.
,
84
, pp.
256
270
. 0263-8223
27.
Carrera
,
E.
, 2003, “
Theories and Finite Elements for Multilayered Plates and Shells: A Unified Compact Formulation With Numerical Assessment and Benchmarking
,”
Arch. Comput. Methods Eng.
1134-3060,
10
, pp.
215
296
.
28.
Carrera
,
E.
, and
Giunta
,
G.
, 2007, “
Hierarchical Closed Form Solutions for Plates Bent by Localized Transverse Loadings
,”
J. Zhejiang Univ.—Sci. A
,
8
, pp.
1026
1037
. 0036-8733
29.
Carrera
,
E.
, and
Giunta
,
G.
, 2008, “
Hierarchical Models for Failure Analysis of Plates Bent by Distributed and Localized Transverse Loadings
,”
J. Zhejiang Univ.—Sci. A
,
9
, pp.
600
613
. 0036-8733
30.
Carrera
,
E.
, and
Ciuffreda
,
A.
, 2005, “
Bending of Composites and Sandwich Plates Subjected to Localized Lateral Loadings: A Comparison of Various Theories
,”
Compos. Struct.
,
68
, pp.
185
202
. 0263-8223
31.
Carrera
,
E.
, and
Ciuffreda
,
A.
, 2005, “
A Unified Formulation to Assess Theories of Multilayered Plates for Various Bending Problems
,”
Compos. Struct.
,
69
, pp.
271
293
. 0263-8223
32.
Carrera
,
E.
, and
Demasi
,
L.
, 2003, “
Two Benchmarks to Assess Two-Dimensional Theories of Sandwich, Composites Plates
,”
AIAA J.
,
41
, pp.
1356
1362
. 0001-1452
33.
Carrera
,
E.
, 1999, “
Multilayered Shell Theories Accounting for Layerwise Mixed Description, Part 1: Governing Equations
,”
AIAA J.
,
37
, pp.
1107
1116
. 0001-1452
34.
Carrera
,
E.
, 1999, “
Multilayered Shell Theories Accounting for Layerwise Mixed Description, Part 2: Numerical Evaluations
,”
AIAA J.
,
37
, pp.
1117
1124
. 0001-1452
35.
Cauchy
,
A. L.
, 1828, “
Sur l’équilibre et le mouvement d’une plaque solide
,”
Exercises de Matematique
,
3
, pp.
328
355
.
36.
Poisson
,
S. D.
, 1829, “
Mémoire sur l’équilibre et le mouvement des corps élastique
,”
Mémoires de l’Académie des Sciences de Paris
,
8
, pp.
357
570
.
37.
Carrera
,
E.
, 2000, “
A Priori vs. a Posteriori Evaluation of Transverse Stresses in Multilayered Orthotropic Plates
,”
Compos. Struct.
,
48
, pp.
245
260
. 0263-8223
38.
Carrera
,
E.
, and
Brischetto
,
S.
, 2008, “
Analysis of Thickness Locking in Classical, Refined and Mixed Multilayered Plate Theories
,”
Compos. Struct.
,
82
, pp.
549
562
. 0263-8223
39.
Carrera
,
E.
, and
Brischetto
,
S.
, 2008, “
Analysis of Thickness Locking in Classical, Refined and Mixed Theories for Layered Shells
,”
Compos. Struct.
,
85
, pp.
83
90
. 0263-8223
40.
Reissner
,
E.
, 1945, “
The Effect of Transverse Shear Deformation on the Bending of Elastic Plates
,”
ASME J. Appl. Mech.
,
12
, pp.
69
76
. 0021-8936
41.
Mindlin
,
E.
, 1951, “
Influence of the Rotatory Inertia and Shear in Flexural Motions of Isotropic Elastic Plates
,”
ASME J. Appl. Mech.
,
18
, pp.
1031
1036
. 0021-8936
42.
Carrera
,
E.
, 2003, “
Historical Review of Zig-Zag Theories for Multilayered Plates and Shells
,”
Appl. Mech. Rev.
0003-6900,
56
, pp.
287
308
.
43.
Murakami
,
M.
, 1986, “
Laminated Composites Plate Theory With Improved In-Plane Response
,”
ASME J. Appl. Mech.
,
53
, pp.
661
666
. 0021-8936
44.
Carrera
,
E.
, 2004, “
On the Use of Murakami’s Zig-Zag Function in the Modeling of Layered Plates and Shells
,”
Compos. Struct.
,
82
, pp.
541
554
. 0263-8223
45.
Reissner
,
E.
, 1984, “
On a Certain Mixed Variational Theorem and a Proposed Application
,”
Int. J. Numer. Methods Eng.
,
20
, pp.
1366
1368
. 0029-5981
46.
Reissner
,
E.
, 1986, “
On a Mixed Variational Theorem and on Shear Deformable Plate Theory
,”
Int. J. Numer. Methods Eng.
,
23
, pp.
193
198
. 0029-5981
47.
Federer
,
H.
, 1945, “
The Gauss-Green Theorem
,”
Trans. Am. Math. Soc.
,
58
, pp.
44
76
. 0002-9947
48.
Carrera
,
E.
,
Giunta
,
G.
, and
Brischetto
,
S.
, 2007, “
Hierarchical Models for Laminated Composite Shells under Localized Bending Loading
,”
11th International Conference on Enhancement of Computational Methods in Engineering and Sciences
, Kyoto, Japan.
49.
Petras
,
A.
, and
Sutcliffe
,
M. P. F.
, 2000, “
Indentation Failure Analysis of Sandwich Beams
,”
Compos. Struct.
,
50
, pp.
311
318
. 0263-8223
50.
Shuaeib
,
F. M.
, and
Soden
,
P. D.
, 1997, “
Indentation Failure of Composite Sandwich Beams
,”
Compos. Sci. Technol.
,
57
, pp.
1249
1259
. 0266-3538
You do not currently have access to this content.