The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code specifies design curves for the fatigue life of structural materials in nuclear power plants. However, the effects of light water reactor (LWR) coolant environments were not explicitly considered in the development of the design curves. The existing fatigue-strain-versus-life (ε-N) data indicate potentially significant effects of LWR coolant environments on the fatigue resistance of pressure vessel and piping steels. Under certain environmental and loading conditions, fatigue lives in water relative to those in air can be a factor of 15 lower for austenitic stainless steels and a factor of 30 lower for carbon and low-alloy steels. This paper reviews the current technical basis for the understanding of the fatigue of piping and pressure vessel steels in LWR environments. The existing fatigue ε-N data have been evaluated to identify the various material, environmental, and loading parameters that influence fatigue crack initiation and to establish the effects of key parameters on the fatigue life of these steels. Statistical models are presented for estimating fatigue life as a function of material, loading, and environmental conditions. An environmental fatigue correction factor for incorporating the effects of LWR environments into ASME Code fatigue evaluations is described. This paper also presents a critical review of the ASME Code fatigue design margins of 2 on stress (or strain) and 20 on life and assesses the possible conservatism in the current choice of design margins.

1.
Langer
,
B. F.
, 1962, “
Design of Pressure Vessels for Low-Cycle Fatigue
,”
ASME J. Basic Eng.
0021-9223,
84
, pp.
389
402
.
2.
1969,
Criteria of the ASME Boiler and Pressure Vessel Code for Design by Analysis in Sections III and VIII, Division 2
,
American Society of Mechanical Engineers
,
New York
.
3.
Cooper
,
W. E.
, 1992, “
The Initial Scope and Intent of the Section III Fatigue Design Procedure
,”
Technical Information from Workshop on Cyclic Life and Environmental Effects in Nuclear Applications
,
Welding Research Council, Inc.
,
Clearwater, FL
.
4.
Chopra
,
O. K.
, and
Shack
,
W. J.
, 1998, “
Effects of LWR Coolant Environments on Fatigue Design Curves of Carbon and Low-Alloy Steels
,” Report No. NUREG/CR-6583.
5.
Gavenda
,
D. J.
,
Luebbers
,
P. R.
, and
Chopra
,
O. K.
, 1997, “
Crack Initiation and Crack Growth Behavior of Carbon and Low-Alloy Steels
,”
Fatigue and Fracture, 1
, Vol.
350
,
S.
Rahman
,
K. K.
Yoon
,
S.
Bhandari
,
R.
Warke
, and
J. M.
Bloom
, eds.,
American Society of Mechanical Engineers
,
New York
, pp.
243
255
.
6.
Chopra
,
O. K.
, and
Shack
,
W. J.
, 1999, “
Overview of Fatigue Crack Initiation in Carbon and Low-Alloy Steels in Light Water Reactor Environments
,”
ASME J. Pressure Vessel Technol.
0094-9930,
121
, pp.
49
60
.
7.
Chopra
,
O. K.
, and
Shack
,
W. J.
, 2001, “
Environmental Effects on Fatigue Crack Initiation in Piping and Pressure Vessel Steels
,” Report No. NUREG/CR-6717.
8.
Chopra
,
O. K.
, 2002, “
Mechanisms and Estimation of Fatigue Crack Initiation in Austenitic Stainless Steels in LWR Environments
,” Report No. NUREG/CR-6787.
9.
Hale
,
D. A.
,
Wilson
,
S. A.
,
Kiss
,
E.
, and
Gianuzzi
,
A. J.
, 1977, “
Low-Cycle Fatigue Evaluation of Primary Piping Materials in a BWR Environment
,” GEAP-20244, U.S. Nuclear Regulatory Comm., Washington, DC.
10.
Ranganath
,
S.
,
Kass
,
J. N.
, and
Heald
,
J. D.
, 1982, “
Fatigue Behavior of Carbon Steel Components in High-Temperature Water Environments
,”
Low-Cycle Fatigue and Life Prediction
, ASTM STP 770,
C.
Amzallag
,
B. N.
Leis
, and
P.
Rabbe
, eds.,
American Society for Testing and Materials
,
Philadelphia, PA
, pp.
436
459
.
11.
Nagata
,
N.
,
Sato
,
S.
, and
Katada
,
Y.
, 1991, “
Low-Cycle Fatigue Behavior of Pressure Vessel Steels in High-Temperature Pressurized Water
,”
ISIJ Int.
0915-1559,
31
(
1
), pp.
106
114
.
12.
Higuchi
,
M.
, and
Iida
,
K.
, 1991, “
Fatigue Strength Correction Factors for Carbon and Low-Alloy Steels in Oxygen-Containing High-Temperature Water
,”
Nucl. Eng. Des.
0029-5493,
129
, pp.
293
306
.
13.
Katada
,
Y.
,
Nagata
,
N.
, and
Sato
,
S.
, 1993, “
Effect of Dissolved Oxygen Concentration on Fatigue Crack Growth Behavior of A533 B Steel in High Temperature Water
,”
ISIJ Int.
0915-1559,
33
(
8
), pp.
877
883
.
14.
Kanasaki
,
H.
,
Hayashi
,
M.
,
Iida
,
K.
, and
Asada
,
Y.
, 1995, “
Effects of Temperature Change on Fatigue Life of Carbon Steel in High Temperature Water
,”
Fatigue and Crack Growth: Environmental Effects, Modeling Studies, and Design Considerations
, PVP Vol.
306
,
S.
Yukawa
, ed.,
American Society of Mechanical Engineers
,
New York
, pp.
117
122
.
15.
Nakao
,
G.
,
Kanasaki
,
H.
,
Higuchi
,
M.
,
Iida
,
K.
, and
Asada
,
Y.
, 1995, “
Effects of Temperature and Dissolved Oxygen Content on Fatigue Life of Carbon and Low-Alloy Steels in LWR Water Environment
,”
Fatigue and Crack Growth: Environmental Effects, Modeling Studies, and Design Considerations
, PVP Vol.
306
,
S.
Yukawa
, ed.,
American Society of Mechanical Engineers
,
New York
, pp.
123
128
.
16.
Higuchi
,
M.
,
Iida
,
K.
, and
Asada
,
Y.
, 1997, “
Effects of Strain Rate Change on Fatigue Life of Carbon Steel in High-Temperature Water
,”
Proceedings of Symposium on Effects of the Environment on the Initiation of Crack Growth
,
American Society for Testing and Materials
,
Philadelphia, PA
, ASTM STP 1298.
17.
Higuchi
,
M.
,
Iida
,
K.
, and
Sakaguchi
,
K.
, 2001, “
Effects of Strain Rate Fluctuation and Strain Holding on Fatigue Life Reduction for LWR Structural Steels in Simulated LWR Water
,”
Pressure Vessel and Piping Codes and Standards
, PVP Vol.
419
,
M. D.
Rana
, ed.,
American Society of Mechanical Engineers
,
New York
, pp.
143
152
.
18.
Hirano
,
A.
,
Yamamoto
,
M.
,
Sakaguchi
,
K.
,
Shoji
,
T.
, and
Iida
,
K.
, 2002, “
Effects of Water Flow Rate on Fatigue Life of Ferritic and Austenitic Steels in Simulated LWR Environment
,”
Pressure Vessel and Piping Codes and Standards—2002
, PVP Vol.
439
,
M. D.
Rana
, ed.,
American Society of Mechanical Engineers
,
New York
, pp.
143
150
.
19.
Hirano
,
A.
,
Sakaguchi
,
K.
, and
Shoji
,
T.
, 2007, “
Effects of Water Flow Rate on Fatigue Life of Structural Steels Under Simulated BWR Environment
,”
Proceedings of the 2007 ASME Pressure Vessels and Piping Conference
, San Antonio, TX, July 22–26, Paper No. PVP2007-26423.
20.
Higuchi
,
M.
, and
Iida
,
K.
, 1997, “
Reduction in Low-Cycle Fatigue Life of Austenitic Stainless Steels in High-Temperature Water
,”
Pressure Vessel and Piping Codes and Standards
, PVP Vol.
353
,
D. P.
Jones
,
B. R.
Newton
,
W. J.
O’Donnell
,
R.
Vecchio
,
G. A.
Antaki
,
D.
Bhavani
,
N. G.
Cofie
, and
G. L.
Hollinger
, eds.,
American Society of Mechanical Engineers
,
New York
, pp.
79
86
.
21.
Tsutsumi
,
K.
,
Kanasaki
,
H.
,
Umakoshi
,
T.
,
Nakamura
,
T.
,
Urata
,
S.
,
Mizuta
,
H.
, and
Nomoto
,
S.
, 2000, “
Fatigue Life Reduction in PWR Water Environment for Stainless Steels
,”
Assessment Methodologies for Preventing Failure: Service Experience and Environmental Considerations
, PVP Vol.
410-2
,
R.
Mohan
, ed.,
American Society of Mechanical Engineers
,
New York
, pp.
23
34
.
22.
Tsutsumi
,
K.
,
Dodo
,
T.
,
Kanasaki
,
H.
,
Nomoto
,
S.
,
Minami
,
Y.
, and
Nakamura
,
T.
, 2001, “
Fatigue Behavior of Stainless Steel Under Conditions of Changing Strain Rate in PWR Primary Water
,”
Pressure Vessel and Piping Codes and Standards
, PVP Vol.
419
,
M. D.
Rana
, ed.,
American Society of Mechanical Engineers
,
New York
, pp.
135
141
.
23.
Tsutsumi
,
K.
,
Higuchi
,
M.
Iida
,
K.
, and
Yamamoto
,
Y.
, 2002, “
The Modified Rate Approach to Evaluate Fatigue Life Under Synchronously Changing Temperature and Strain Rate in Elevated Temperature Water
,”
Pressure Vessel and Piping Codes and Standards—2002
, PVP Vol.
439
,
M. D.
Rana
, ed.,
American Society of Mechanical Engineers
,
New York
, pp.
99
107
.
24.
Higuchi
,
M.
,
Hirano
,
T.
, and
Sakaguchi
,
K.
, 2004, “
Evaluation of Fatigue Damage on Operating Plant Components in LWR Water
,”
Pressure Vessel and Piping Codes and Standards—2004
, PVP Vol.
480
,
American Society of Mechanical Engineers
,
New York
, pp.
129
138
.
25.
Nomura
,
Y.
,
Higuchi
,
M.
,
Asada
,
Y.
, and
Sakaguchi
,
K.
, 2004, “
The Modified Rate Approach Method to Evaluate Fatigue Life Under Synchronously Changing Temperature and Strain Rate in Elevated Temperature Water in Austenitic Stainless Steels
,”
Pressure Vessel and Piping Codes and Standards—2004
, PVP Vol.
480
,
American Society of Mechanical Engineers
,
New York
, pp.
99
108
.
26.
Higuchi
,
M.
,
Sakaguchi
,
K.
,
Hirano
,
A.
, and
Nomura
,
Y.
, 2006, “
Revised and New Proposal of Environmental Fatigue Life Correction Factor (Fen) for Carbon and Low-Alloy Steels and Nickel Base Alloys in LWR Water Environments
,”
Proceedings of the 2006 ASME Pressure Vessels and Piping Conference
, Vancouver, BC, Canada, July 23–27, Paper No. PVP2006-ICPVT-93194.
27.
Higuchi
,
M.
,
Sakaguchi
,
K.
, and
Nomura
,
Y.
, 2007, “
Effects of Strain Holding and Continuously Changing Strain Rate on Fatigue Life Reduction of Structural Materials in Simulated LWR Water
,”
Proceedings of the 2007 ASME Pressure Vessels and Piping Conference
, San Antonio, TX, July 22–26, Paper No. PVP2007-26101.
28.
Chopra
,
O. K.
, 1999, “
Effects of LWR Coolant Environments on Fatigue Design Curves of Austenitic Stainless Steels
,” Report No. NUREG/CR-5704.
29.
Chopra
,
O. K.
, and
Gavenda
,
D. J.
, 1998, “
Effects of LWR Coolant Environments on Fatigue Lives of Austenitic Stainless Steels
,”
ASME J. Pressure Vessel Technol.
0094-9930,
120
, pp.
116
121
.
30.
Chopra
,
O. K.
, and
Shack
,
W. J.
, 2003, “
Review of the Margins for ASME Code Design Curves—Effects of Surface Roughness and Material Variability
,” Report No. NUREG/CR-6815.
31.
Chopra
,
O. K.
, and
Shack
,
W. J.
, 2007, “
Effect of LWR Coolant Environments on the Fatigue Life of Reactor Materials, Final Report
,” Report No. NUREG/CR-6909.
32.
Chopra
,
O. K.
,
Alexandreanu
,
B.
, and
Shack
,
W. J.
, 2005, “
Effect of Material Heat Treatment on Fatigue Crack Initiation in Austenitic Stainless Steels in LWR Environments
,” Report No. NUREG/CR-6878.
33.
Terrell
,
J. B.
, 1988, “
Effect of Cyclic Frequency on the Fatigue Life of ASME SA-106-B Piping Steel in PWR Environments
,”
J. Mater. Eng.
0931-7058,
10
, pp.
193
203
.
34.
Lenz
,
E.
,
Wieling
,
N.
, and
Muenster
,
H.
, 1988, “
Influence of Variation of Flow Rates and Temperature on the Cyclic Crack Growth Rate Under BWR Conditions
,”
Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors
,
The Metallurgical Society
,
Warrendale, PA
.
35.
Garud
,
Y. S.
,
Paterson
,
S. R.
,
Dooley
,
R. B.
,
Pathania
,
R. S.
,
Hickling
,
J.
, and
Bursik
,
A.
, 1997, “
Corrosion Fatigue of Water Touched Pressure Retaining Components in Power Plants
,” Final Report No. EPRI TR-106696, Electric Power Research Institute, Palo Alto, CA.
36.
Kilian
,
R.
,
Hickling
,
J.
, and
Nickell
,
R.
, 2005, “
Environmental Fatigue Testing of Stainless Steel Pipe Bends in Flowing, Simulated PWR Primary Water at 240°C
,”
Third International Conference on Fatigue of Reactor Components
, MRP-151,
Electric Power Research Institute
,
Palo Alto, CA
, Aug.
37.
Van Der Sluys
,
W. A.
,
Young
,
B. A.
, and
Doyle
,
D.
, 2000, “
Corrosion Fatigue Properties on Alloy 690 and Some Nickel-Based Weld Metals
,”
Assessment Methodologies for Preventing Failure: Service Experience and Environmental Considerations
, PVP Vol.
410-2
,
R.
Mohan
, ed.,
American Society of Mechanical Engineers
,
New York
, pp.
85
91
.
38.
Wire
,
G. L.
,
Leax
,
T. R.
, and
Kandra
,
J. T.
, 1999, “
Mean Stress and Environmental Effects on Fatigue in Type 304 Stainless Steel
,” in
Probabilistic and Environmental Aspects of Fracture and Fatigues
, PVP Vol.
386
,
S.
Rahman
, ed.,
American Society of Mechanical Engineers
,
New York
, pp.
213
228
.
39.
Solomon
,
H. D.
,
Amzallag
,
C.
,
Vallee
,
A. J.
, and
De Lair
,
R. E.
, 2005, “
Influence of Mean Stress on the Fatigue Behavior of 304L SS in Air and PWR Water
,”
Proceedings of the 2005 ASME Pressure Vessels and Piping Conference
,
Denver, CO
, July 17–21, Paper No. PVP2005-71064.
40.
Solomon
,
H. D.
,
Amzallag
,
C.
,
De Lair
,
R. E.
, and
Vallee
,
A. J.
, 2004, “
Strain Controlled Fatigue of Type 304L SS in Air and PWR Water
,”
Proceedings of the Third International Conference on Fatigue of Reactor Components
,
Seville, Spain
, Oct. 3–6.
41.
Lenz
,
E.
,
Stellwag
,
B.
, and
Wieling
,
N.
, 1983, “
The Influence of Strain-Induced Corrosion Cracking on the Crack Initiation in Low-Alloy Steels in HT-Water—A Relation Between Monotonic and Cyclic Crack Initiation Behavior
,”
IAEA Specialists Meeting Corrosion and Stress Corrosion of Steel Pressure Boundary Components and Steam Turbines, VTT Symposium
, 43,
Espoo, Finland
, pp.
243
267
.
42.
Hickling
,
J.
, and
Blind
,
D.
, 1986, “
Strain-Induced Corrosion Cracking of Low-Alloy Steels in LWR Systems—Case Histories and Identification of Conditions Leading to Susceptibility
,”
Nucl. Eng. Des.
0029-5493,
91
, pp.
305
330
.
43.
Majumdar
,
S.
,
Chopra
,
O. K.
, and
Shack
,
W. J.
, 1993, “
Interim Fatigue Design Curves for Carbon, Low-Alloy, and Austenitic Stainless Steels in LWR Environments
,” Report No. NUREG/CR-5999.
44.
Keisler
,
J.
,
Chopra
,
O. K.
, and
Shack
,
W. J.
, 1995, “
Fatigue Strain-Life Behavior of Carbon and Low-Alloy Steels, Austenitic Stainless Steels, and Alloy 600 in LWR Environments
,” Report No. NUREG/CR-6335.
45.
Wire
,
G. L.
, and
Li
,
Y. Y.
, 1996, “
Initiation of Environmentally-Assisted Cracking in Low-Alloy Steels
,”
Fatigue and Fracture
, Vol.
1
, PVP Vol.
323
,
H. S.
Mehta
, ed.,
American Society of Mechanical Engineers
,
New York
, pp.
269
289
.
46.
Bulloch
,
J. H.
, 1988, “
Environmental Assisted Cracking Phenomena in Reactor Pressure Vessel Steel—The Role of Manganese Sulphide Segregation
,”
Proceedings of the 3rd International Symposium on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors
,
G. J.
Theus
and
J. R.
Weeks
, eds.,
The Metallurgical Society
,
Warrendale, PA
, pp.
261
267
.
47.
Van Der Sluys
,
W. A.
, and
Emanuelson
,
R. H.
, 1990, “
Environmental Acceleration of Fatigue Crack Growth in Reactor Pressure Vessel Materials and Environments
,”
Environmentally Assisted Cracking: Science and Engineering
, ASTM STP 1049,
W. B.
Lisagor
,
T. W.
Crooker
, and
B. N.
Leis
, eds.,
American Society for Testing and Materials
,
Philadelphia, PA
, pp.
117
135
.
48.
Ford
,
F. P.
, 1996, “
Quantitative Prediction of Environmentally Assisted Cracking
,”
Corrosion (Houston)
0010-9312,
52
(
5
), pp.
375
395
.
49.
Hänninen
,
H.
,
Törrönen
,
K.
, and
Cullen
,
W. H.
, 1986, “
Comparison of Proposed Cyclic Crack Growth Mechanisms of Low Alloy Steels in LWR Environments
,”
Proceedimgs of the 2nd International Atomic Energy Agency Specialists’ Meeting on Subcritical Crack Growth
, Apr., Vol.
2
, pp.
73
97
, Report No. NUREG/CP-0067.
50.
Shack
,
W. J.
, and
Kassner
,
T. F.
, 1994, “
Review of Environmental Effects on Fatigue Crack Growth of Austenitic Stainless Steels
,” Report No. NUREG/CR-6176.
51.
Evans
,
W. M.
, and
Wire
,
G. L.
, 2002, “
Results of High Stress Ratio and Low Stress Intensity on Fatigue Crack Growth Rates for 304 Stainless Steel in 288°C Water
,”
Pressure Vessel and Piping Codes and Standards
, PVP Vol.
439
,
R. D.
Rana
, ed.,
American Society of Mechanical Engineers
,
New York
, pp.
91
98
.
52.
Wire
,
G. L.
,
Evans
,
W. M.
, and
Mills
,
W. J.
, 2004, “
Fatigue Crack Propagation Tests on 304 Stainless Steel in High Temperature Water—Accelerated Cracking Rates and Transition to Lower Rates
,”
Pressure Vessel and Piping Codes and Standards
, PVP Vol.
480
,
G. S.
Chakrabarti
, ed.,
American Society of Mechanical Engineers
,
New York
, pp.
71
81
.
53.
Tice
,
D.
,
Platts
,
N.
,
Rigby
,
K.
,
Stairmand
,
J.
, and
Swan
,
D.
, 2005, “
Influence of PWR Primary Coolant Environment on Corrosion Fatigue Crack Growth of Austenitic Stainless Steel
,”
Proceedings of the 2005 Pressure Vessel and Piping Conference
,
Denver, CO
, July 17–21, Paper No. PVP2005-71563.
54.
Amzallag
,
C.
,
Rabbe
,
P.
,
Gallet
,
G.
, and
Lieurade
,
H.-P.
, 1978, “
Influence des Conditions de Sollicitation Sur le Comportement en Fatigue Oligocyclique D’aciers Inoxydables Austénitiques
,”
Mem. Sci. Rev. Metall.
0025-9128, March, pp.
161
173
.
55.
Jaske
,
C. E.
, and
O’Donnell
,
W. J.
, 1977, “
Fatigue Design Criteria for Pressure Vessel Alloys
,”
ASME J. Pressure Vessel Technol.
0094-9930,
99
, pp.
584
592
.
56.
Conway
,
J. B.
,
Stentz
,
R. H.
, and
Berling
,
J. T.
, 1975, “
Fatigue, Tensile, and Relaxation Behavior of Stainless Steels
,” TID-26135, U.S. Atomic Energy Commission, Washington, DC.
57.
Keller
,
D. L.
, 1977, “
Progress on LMFBR Cladding, Structural, and Component Materials Studies During July, 1971 Through June, 1972, Final Report
,” Task 32, Battelle-Columbus Laboratories, Report No. BMI-1928.
58.
Jacko
,
R. J.
, 1983, “
Fatigue Performance of Ni-Cr-Fe Alloy 600 Under Typical PWR Steam Generator Conditions
,” EPRI NP-2957, Electric Power Research Institute, Palo Alto, CA.
59.
Dinerman
,
A. E.
, 1960, “
Cyclic Strain Fatigue of Inconel at 75to600°F
,” KAPL-2084, Knolls Atomic Power Laboratory, Schenectady, NY.
60.
Mowbray
,
D. F.
,
Sokol
,
G. J.
, and
Savidge
,
R. E.
, 1965, “
Fatigue Characteristics of Ni-Cr-Fe Alloys With Emphasis on Pressure-Vessel Cladding
,” KAPL-3108, Knolls Atomic Power Laboratory, Schenectady, NY.
61.
Mehta
,
H. S.
, 1999, “
An Update on the EPRI/GE Environmental Evaluation Methodology and Its Applications
,”
Probabilistic and Environmental Aspects of Fracture and Fatigue
, PVP Vol.
386
,
S.
Rahman
, ed.,
American Society of Mechanical Engineers
,
New York
, pp.
183
193
.
62.
Van Der Sluys
,
W. A.
, 2003, “
PVRC’s Position on Environmental Effects on Fatigue Life in LWR Applications
,” Welding Research Council Bulletin 487,
Welding Research Council, Inc.
, New York.
63.
O’Donnell
,
W. J.
,
O’Donnell
,
W. J.
, and
O’Donnell
,
T. P.
, 2005, “
Proposed New Fatigue Design Curves for Austenitic Stainless Steels, Alloy, 600, and Alloy 800
,”
Proceedings of the 2005 ASME Pressure Vessels and Piping Conference
,
Denver, CO
, July 17–21, Paper No. PVP2005-71409.
64.
Ford
,
F. P.
, and
Andresen
,
P. L.
, 1990, “
Stress Corrosion Cracking of Low-Alloy Pressure Vessel Steel in 288°C Water
,”
Proceedings of the 3rd International Atomic Energy Agency Specialists’ Meeting on Subcritical Crack Growth
, Vol.
1
, pp.
37
56
, Report No. NUREG/CP-0112.
65.
Ford
,
F. P.
, 1986, “
Overview of Collaborative Research Into the Mechanisms of Environmentally Controlled Cracking in the Low Alloy Pressure Vessel Steel/Water System
,”
Proceedings of the 2nd International Atomic Energy Agency Specialists’ Meeting on Subcritical Crack Growth
, Apr., Vol.
2
, pp.
3
71
, Report No. NUREG/CP-0067.
66.
Solomon
,
H. D.
,
DeLair
,
R. E.
, and
Unruh
,
A. D.
, 1997, “
Crack Initiation in Low-Alloy Steel in High-Purity Water
,”
Effects of the Environment on the Initiation of Crack Growth
, ASTM STP 1298,
W. A.
Van Der Sluys
,
R. S.
Piascik
, and
R.
Zawierucha
, eds.,
American Society for Testing and Materials
,
Philadelphia, PA
, pp.
135
149
.
67.
Hickling
,
J.
, 2001, “
Strain Induced Corrosion Cracking of Low-Alloy Reactor Pressure Vessel Steels Under BWR Conditions
,”
Proceedings of the 10th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors
,
F. P.
Ford
,
S. M.
Bruemmer
, and
G. G.
Was
, eds.,
The Minerals, Metals, and Materials Society
,
Warrendale, PA
, Paper No. 0156.
68.
Johnson
,
L. G.
, 1951, “
The Median Ranks of Sample Values in Their Population With an Application to Certain Fatigue Studies
,”
Ind. Math.
0019-8528,
2
, pp.
1
9
.
69.
Lipson
,
C.
, and
Sheth
,
N. J.
, 1973,
Statistical Design and Analysis of Engineering Experiments
,
McGraw-Hill
,
New York
.
70.
Kooistra
,
L. F.
,
Lange
,
E. A.
, and
Pickett
,
A. G.
, 1964, “
Full-Size Pressure Vessel Testing and Its Application to Design
,”
ASME J. Eng. Power
0022-0825,
86
, pp.
419
428
.
71.
Maiya
,
P. S.
, and
Busch
,
D. E.
, 1975, “
Effect of Surface Roughness on Low-Cycle Fatigue Behavior of Type 304 Stainless Steel
,”
Metall. Trans. A
0360-2133,
6A
, pp.
1761
1766
.
72.
Manjoine
,
M. J.
, 1981, “
Fatigue Damage Models for Annealed Type 304 Stainless Steel Under Complex Strain Histories
,”
Transactions of the 6th International Conference on Structural Mechanics in Reactor Technology (SMiRT)
, Vol.
L
, 8/1,
North-Holland Amsterdam
, pp.
1
13
.
73.
Nian
,
L.
, and
Du
,
B.-P.
, 1995, “
The Effect of Low-Stress High-Cycle Fatigue on the Microstructure and Fatigue Threshold of a 40Cr Steel
,”
Int. J. Fatigue
0142-1123,
17
(
1
), pp.
43
48
.
74.
Solin
,
J. P.
, 2006, “
Fatigue of Stabilized SS and 316NG Alloy in PWR Environment
,”
Proceedings of the 2006 ASME Pressure Vessels and Piping Conference
,
Vancouver, BC, Canada
, July 23–27, Paper No. PVP2006-ICPVT-93833.
75.
Faidy
,
C.
,
Le Courtois
,
T.
,
de Fraguier
,
E.
,
Leduff
,
J.-A.
,
Lefrancois
,
A.
, and
Dechelotte
,
J.
, 2000, “
Thermal Fatigue in French RHR System
,”
International Conference on Fatigue of Reactor Components
,
Napa, CA
, July 31–Aug. 2.
76.
Manjoine
,
M. J.
, and
Johnson
,
R. L.
, 1994, “
Fatigue Design Curves for Carbon and Low Alloy Steels up to 700°F (371°C)
,”
Material Durability/Life Prediction Modeling: Materials for the 21st Century
, PVP-Vol.
290
,
American Society of Mechanical Engineers
,
New York
.
77.
Stevens
,
G. L.
,
Davis
,
J. M.
, and
Spain
,
L.
, 2007, “
Sample Environmental Fatigue Calculations Associated With the Review of Draft Regulatory Guide DG-1144
,”
Proceedings of the 2007 ASME Pressure Vessels and Piping Conference
,
San Antonio, TX
, July 22–26, Paper No. PVP2007–26211.
78.
Mehta
,
H. S.
, and
Hwang
,
H. H.
, 2007, “
Application of Draft Regulatory Guide DG-1144 Guidelines for Environmental Fatigue Evaluation to a BWR Feedwater Piping System
,”
Proceedings of the 2007 ASME Pressure Vessels and Piping Conference
,
San Antonio, TX
, July 22–26, Paper No. PVP2007-26143.
You do not currently have access to this content.