Uniaxial, torsion, and axial-torsion fatigue experiments were conducted on a pressure vessel steel, 16MnR, in ambient air. The uniaxial experiments were conducted using solid cylindrical specimens. Axial-torsion experiments employed thin-walled tubular specimens subjected to proportional and nonproportional loading. The true fracture stress and strain were obtained by testing solid shafts under monotonic torsion. Experimental results reveal that the material under investigation does not display significant nonproportional hardening. The material was found to display shear cracking under pure shear loading but tensile cracking under tension-compression loading. Two critical plane multiaxial fatigue criteria, namely, the Fatemi–Socie criterion and the Jiang criterion, were evaluated based on the experimental results. The Fatemi–Socie criterion combines the maximum shear strain amplitude with a consideration of the normal stress on the critical plane. The Jiang criterion makes use of the plastic strain energy on a material plane as the major contributor to the fatigue damage. Both criteria were found to correlate well with the experiments in terms of fatigue life. The predicted cracking directions by the criteria were less satisfactory when comparing with the experimentally observed cracking behavior under different loading conditions.

1.
Socie
,
D. F.
, 1993, “
Critical Plane Approaches for Multiaxial Fatigue Damage Assessment
,”
Advances in Multiaxial Fatigue
,
D. L.
McDowell
and
R.
Ellis
, eds., pp.
7
36
.
2.
Socie
,
D. F.
,
Waill
,
L. A.
, and
Dittmer
,
D. F.
, 1985, “
Biaxial Fatigue of Inconel 718 Including Mean Stress Effects
,”
Multiaxial Fatigue
,
K. J.
Miller
and
M. W.
Brown
, eds., pp.
463
481
.
3.
Socie
,
D. F.
, and
Bannantine
,
J.
, 1988, “
Bulk Deformation Damage Models
,”
Mater. Sci. Eng.
0025-5416,
A103
, pp.
3
13
.
4.
Kurath
,
P.
, and
Fatemi
,
A.
, 1990, “
Cracking Mechanisms for Mean Stress/Strain Low-Cycle Multiaxial Fatigue Loadings
,”
Quantitative Methods in Fractography
,
B. M.
Strauss
and
S. K.
Putatunda
, eds., pp.
123
143
.
5.
Socie
,
D. F.
,
Kurath
,
P.
, and
Koch
,
J.
, 1989, “
A Multiaxial Fatigue Damage Parameter
,”
Biaxial and Multiaxial Fatigue
(EGF3),
M. W.
Brown
and
K. J.
Miller
, eds.,
Mechanical Engineering
,
London
, pp.
535
550
.
6.
Brown
,
M. W.
, and
Miller
,
K. J.
, 1973, “
A Theory for Fatigue Failure under Multiaxial Stress-Strain Conditions
,”
Proc. Inst. Mech. Eng.
0020-3483,
187
, pp.
745
755
.
7.
Kandil
,
F. A.
,
Brown
,
M. W.
, and
Miller
,
K. J.
, 1982, “
Biaxial Low-Cycle Fatigue Fracture of 316 Stainless Steel at Elevated Temperatures
,”
Book 280
,
The Metals Society
,
London, pp
.
203
210
.
8.
Fatemi
,
A.
, and
Socie
,
D. F.
, 1988, “
A Critical Plane Approach to Multiaxial Fatigue Damage Including Out of Phase Loading
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
11
, pp.
149
165
.
9.
Smith
,
K. N.
,
Watson
,
P.
, and
Topper
,
T. H.
, 1970, “
A Stress Strain Function for the Fatigue of Metals
,”
J. Mater.
0022-2453,
5
, pp.
767
778
.
10.
Socie
,
D. F.
, 1987, “
Multiaxial Fatigue Damage Models
,”
ASME J. Eng. Mater. Technol.
0094-4289,
109
, pp.
293
298
.
11.
Chu
,
C.-C.
, 1995, “
Fatigue Damage Calculation Using the Critical Plane Approach
,”
ASME J. Eng. Mater. Technol.
0094-4289,
117
, pp.
41
49
.
12.
Jiang
,
Y.
, and
Sehitoglu
,
H.
, 1992, “
Fatigue and Stress Analysis of Rolling Contact
,” College of Engineering, University of Illinois at Urbana-Champaign, Report No. 161.
13.
Nadai
,
A.
, 1950,
Theory of Flow and Fracture of Solids
,
2nd ed.
,
McGraw-Hill
,
New York
, Vol.
1
.
14.
Manson
,
S. S.
, 1965, “
Fatigue: A Complex Subject-Some Simple Approximations
,”
Exp. Mech.
0014-4851,
5
, pp.
193
226
.
15.
Jiang
,
Y.
, 2000, “
A Fatigue Criterion for General Multiaxial Loading
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
23
, pp.
19
32
.
16.
Jiang
,
Y.
,
Hertel
,
O.
,
Hoffmeyer
,
J.
, and
Vormwald
,
M.
, 2007, “
An Experimental Evaluation of Three Critical Plane Multiaxial Fatigue Criteria
,”
Int. J. Fatigue
0142-1123,
29
, pp.
1490
1502
.
17.
Jiang
,
Y.
, 2001, “
An Experimental Study of Inhomogeneous Cyclic Plastic Deformation
,”
ASME J. Eng. Mater. Technol.
0094-4289,
123
, pp.
274
280
.
18.
Zhang
,
J.
and
Jiang
,
Y.
, 2004, “
A Study of Inhomogeneous Plastic Deformation of 1045 Steel
,”
ASME J. Eng. Mater. Technol.
0094-4289,
126
, pp.
164
171
.
19.
Jiang
,
Y.
, and
Kurath
,
P.
, 1997, “
Nonproportional Cyclic Deformation: Critical Experiments and Analytical Modeling
,”
Int. J. Plast.
0749-6419,
13
, pp.
743
763
.
20.
Wang
,
C. H.
and
Brown
,
M. W.
, 1996, “
Life Prediction Techniques for Variable Amplitude Multi-Axial Fatigue-Part 1: Theories
,”
ASME J. Eng. Mater. Technol.
0094-4289,
118
, pp.
367
370
.
21.
Wang
,
C. H.
, and
Brown
,
M. W.
, 1996, “
Life Prediction Techniques for Variable Amplitude Multi-Axial Fatigue-Part 2: Comparison With Experimental Results
,”
ASME J. Eng. Mater. Technol.
0094-4289,
118
, pp.
371
374
.
22.
Chu
,
C.-C.
, 1999, “
A 3-D Rainflow Method: Using Plasticity Model to Define Damage Events
,”
Proceedings of Plasticity ‘99
,
A. S.
Khan
, ed., pp.
885
888
.
You do not currently have access to this content.