The resistance of polycrystalline materials to intergranular cracking can be influenced by the microstructure. In sensitized stainless steels, for example, the grain boundaries prone to sensitization form paths of low resistance for intergranular stress corrosion cracking. The nonsensitized grain boundaries, such as twin boundaries, have been observed to encourage the formation of crack bridging ligaments. Computational models of intergranular cracking have been developed to investigate the consequences of crack bridging, through its effects on crack propagation in microstructures with different fractions of nonsensitized boundaries. This paper introduces the recently developed two-dimensional model for intergranular cracking with crack bridging, and reports its application to investigate the effect of grain size. It is shown that the size of the crack bridging zone depends on the grain size, and the shielding contribution depends on the relative size of the bridging zone compared to the crack length. It is concluded that both grain refinement and increase in the fraction of resistant boundaries can improve microstructure resistance to intergranular cracking. These observations are consistent with the effects of grain boundary engineering on stress corrosion cracking resistance in sensitized stainless steels.

1.
Lim
,
L. C.
, and
Watanabe
,
T.
, 1990, “
Fracture-Toughness and Brittle-Ductile Transition Controlled by Grain-Boundary Character Distribution (GBCD) in Polycrystals
,”
Acta Metall. Mater.
0956-7151,
38
, pp.
2507
2516
.
2.
Lin
,
P.
,
Palumbo
,
G.
,
Erb
,
U.
, and
Aust
,
K. T.
, 1995, “
Influence of Grain-Boundary-Character-Distribution on Sensitization and Intergranular Corrosion of Alloy-600
,”
Scr. Metall. Mater.
0956-716X,
33
, pp.
1387
1392
.
3.
Pan
,
Y.
,
Adams
,
B. L.
,
Olson
,
T.
, and
Panayotou
,
N.
, 1996, “
Grain-Boundary Structure Effects on Intergranular Stress Corrosion Cracking of Alloy X-750
,”
Acta Mater.
1359-6454,
44
, pp.
4685
4695
.
4.
Bruemmer
,
S. M.
, and
Was
,
G. S.
, 1994, “
Microstructural and Microchemical Mechanisms Controlling Intergranular Stress Corrosion Cracking in Light-Water-Reactor Systems
,”
J. Nucl. Mater.
0022-3115,
216
, pp.
348
363
.
5.
Gertsman
,
V. Y.
, and
Bruemmer
,
S. M.
, 2001, “
Study of Grain Boundary Character Along Intergranular Stress Corrosion Crack Paths in Austenitic Alloys
,”
Acta Mater.
1359-6454,
49
, pp.
1589
1598
.
6.
Watanabe
,
T.
, 1984, “
An Approach to Grain-Boundary Design for Strong and Ductile Polycrystals
,”
Res. Mech.
0143-0084,
11
, pp.
47
84
.
7.
Palumbo
,
G.
,
King
,
P. J.
,
Aust
,
K. T.
,
Erb
,
U.
, and
Lichtenberger
,
P. C.
, 1991, “
Grain-Boundary Design and Control for Intergranular Stress-Corrosion Resistance
,”
Scr. Metall. Mater.
0956-716X,
25
, pp.
1775
1780
.
8.
Gertsman
,
V. Y.
, and
Tangri
,
K.
, 1997, “
Modelling of Intergranular Damage Propagation
,”
Acta Mater.
1359-6454,
45
, pp.
4107
4116
.
9.
Schuh
,
C. A.
,
Minich
,
R. W.
, and
Kumar
,
M.
, 2003, “
Connectivity and Percolation in Simulated Grain-Boundary Networks
,”
Philos. Mag.
1478-6435,
83
, pp.
711
726
.
10.
Lehockey
,
E. M.
,
Brennenstuhl
,
A. M.
, and
Thompson
,
I.
, 2004, “
On the Relationship Between Grain Boundary Connectivity, Coincident Site Lattice Boundaries, and Intergranular Stress Corrosion Cracking
,”
Corros. Sci.
0010-938X,
46
, pp.
2383
2404
.
11.
Marrow
,
T. J.
,
Babout
,
L.
,
Connolly
,
B. J.
,
Engelberg
,
D.
,
Johnson
,
G.
,
Buffiere
,
J.-Y.
,
Withers
,
P. J.
, and
Newman
,
R. C.
, 2005, “
High-Resolution, In-Situ, Tomographic Observations of Stress Corrosion Cracking
,”
Environmentally Induced Cracking of Materials
,
S.
Shipilov
, ed.,
Elsevier
,
New York
.
12.
Engelberg
,
D. L.
,
Marrow
,
T. J.
,
Newman
,
R. C.
, and
Babout
,
L.
, 2005, “
Grain Boundary Engineering for Crack Bridging: A New Model for Intergranular Stress Corrosion Crack Propagation
,”
Environmentally Induced Cracking of Materials
,
S.
Shipilov
, ed.,
Elsevier
,
New York
.
13.
Marrow
,
T. J.
,
Babout
,
L.
,
Jivkov
,
A. P.
,
Wood
,
P.
,
Engelberg
,
D.
,
Stevens
,
N.
,
Withers
,
P. J.
, and
Newman
,
R. C.
, 2006, “
Three Dimensional Observations and Modelling of Intergranular Stress Corrosion Cracking in Austenitic Stainless Steel
,”
J. Nucl. Mater.
0022-3115,
352
, pp.
62
74
.
14.
Babout
,
L.
,
Marrow
,
T. J.
,
Engelberg
,
D.
, and
Withers
,
P. J.
, 2006, “
X-Ray Microtomographic Observation of Intergranular Stress Corrosion Cracking in Sensitised Austenitic Stainless Steel
,”
Med. Imaging Technol.
0288-450X,
22
, pp.
1068
1075
.
15.
Jivkov
,
A. P.
,
Stevens
,
N. P. C.
, and
Marrow
,
T. J.
, 2005, “
The Roles of Microstructure and Mechanics in Intergranular Stress Corrosion Cracking
,”
Simulation of Electrochemical Processes
,
C. A.
Brebbia
,
V. G.
DeGiorgi
, and
R. A.
Adey
, eds.,
WIT
,
Southampton, UK
, pp.
217
226
.
16.
Jivkov
,
A. P.
,
Stevens
,
N. P. C.
, and
Marrow
,
T. J.
, 2006, “
A 2D Meso-Scale Model for Intergranular Stress Corrosion Crack Propagation
,”
Acta Mater.
1359-6454,
54
, pp.
3493
3501
.
17.
Jivkov
,
A. P.
,
Stevens
,
N. P. C.
, and
Marrow
,
T. J.
, 2006, “
A Three-Dimensional Computational Model for Intergranular Cracking
,”
Comput. Mater. Sci.
0927-0256,
38
, pp.
442
453
.
18.
Thomas
,
L. E.
, and
Bruemmer
,
S. M.
, 2000, “
High-Resolution Characterization of Intergranular Attack and Stress Corrosion Cracking of Alloy in High-Temperature Primary Water
,”
Corrosion (Houston)
0010-9312,
56
, pp.
572
587
.
19.
ABAQUS User’s Manual
, Version 6.4, Abaqus Inc., 2004, Pawtucket, RI.
20.
Tada
,
H.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
, 2000,
The Stress Analysis of Cracks Handbook
,
3d ed.
,
ASME
,
New York
.
You do not currently have access to this content.