The primary cause of gun barrel erosion is the heat generated by the shell as its travels along the barrel. Therefore, calculating the heat flux input to the gun bore is very important when investigating wear problems in the gun barrel and examining its thermomechanical properties. This paper employs the continuous-time analog Hopfield neural network (CHNN) to compute the temperature distribution in various forward heat conduction problems. An efficient technique is then proposed for the solution of inverse heat conduction problems using a three-layered backpropagation neural network (BPN). The weak generalization capacity of BPN networks when applied to the solution of nonlinear function approximations is improved by employing the Bayesian regularization algorithm. The CHNN scheme is used to calculate the temperature in a 155mm gun barrel and the trained BPN is then used to estimate the heat flux of the inner surface of the barrel. The results show that the proposed neural network analysis method successfully solves forward heat conduction problems and is capable of predicting the unknown parameters in inverse problems with an acceptable error.

1.
Ahmad
,
I.
, 1988, “
Gun Propulsion Technology
,”
Prog. Astronaut. Aeronaut.
0079-6050,
109
, pp.
311
356
.
2.
Ebihara
,
W. T.
, and
Rorabaugh
,
D. T.
, 1988, “
Gun Propulsion Technology
,”
Prog. Astronaut. Aeronaut.
0079-6050,
109
, pp.
357
376
.
3.
Cote
,
P. J.
, and
Rickard
,
C.
, 2000, “
Gas-Metal Reaction Products in the Erosion of Chromium-Plated Gun Bores
,”
Wear
0043-1648,
241
(
1
), pp.
17
25
.
4.
Lawton
,
B.
, 2001, “
Thermo-Chemical Erosion in Gun Barrels
,”
Wear
0043-1648,
251
(
1
), pp.
827
838
.
5.
Sopok
,
S.
,
Rickard
,
C.
, and
Dunn
,
S.
, 2005, “
Thermal-Chemical-Mechanical Gun Bore Erosion of an Advanced Artillery System Part One: Modeling and Predictions
,”
Wear
0043-1648,
258
(
11
), pp.
659
683
.
6.
She
,
J.-S.
,
Bo
,
Y.-C.
, and
Yang
,
Z.
, 2002, “
Study to Temperature Field and Thermal Stress in the Barrel
,”
Journal of North China Institute of Technology
,
23
(
4
), pp.
243
247
.
7.
Tian
,
Q.
,
Wu
,
J.
,
Fan
,
X.
, and
Zhang
,
Y.
, 2000, “
Finite Difference Technique for Heat Conduction in Multi-Layer Gun Barrels
,”
Acta Armamentarii
,
21
(
4
), pp.
297
300
.
8.
Beck
,
J. V.
,
Blackwell
,
B.
, and
Clair
,
C. R. ST.
, 1985,
Inverse Heat Conduction Ill-posed Problems
,
Wiley
,
New York
, Chap. 1.
9.
Al-Khalidy
,
N.
, 1999, “
Analysis of Boundary Inverse Heat Conduction Problems Using Space Marching With Savitzky-Gollay Digital Filter
,”
Int. Commun. Heat Mass Transfer
0735-1933,
26
(
2
), pp.
199
208
.
10.
Shin
,
M. S.
, and
Lee
,
J. W.
, 2000, “
Prediction of the Inner Wall Shape of an Eroded Furnace by the Nonlinear Inverse Heat Conduction Technique
,”
JSME Int. J., Ser. B
1340-8054,
43
(
4
), pp.
544
549
.
11.
Maillet
,
D.
,
Degiovanni
,
A.
, and
Pasquetti
,
R.
, 1991, “
Inverse Heat Conduction Applied to the Measurement of Heat Transfer Coefficient on a Cylinder. Comparison Between an Analytical and a Boundary Element Technique
,”
ASME J. Heat Transfer
0022-1481,
113
(
3
), pp.
549
557
.
12.
Chen
,
T. C.
, and
Tuan
,
P. C.
, 2005, “
Input Estimation Method Including Finite-Element Scheme for Solving Inverse Heat Conduction Problems
,”
Numer. Heat Transfer, Part B
1040-7790,
47
(
3
), pp.
277
290
.
13.
Dowding
,
K. J.
, and
Beck
,
J. V.
, 1999, “
A Sequential Gradient Method for the Inverse Heat Conduction Problem (IHCP)
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
300
306
.
14.
Lesnic
,
D.
,
Elliott
,
L.
, and
Ingham
,
D. B.
, 1996, “
Application of the Boundary Element Method to Inverse Heat Conduction Problems
,”
Int. J. Heat Mass Transfer
0017-9310,
39
(
7
), pp.
1503
1517
.
15.
Dumek
,
V.
,
Druckmuller
,
M.
,
Raudensky
,
M.
, and
Woodburg
,
K. A.
, 1993, “
Novel Approaches to the IHCP: Neural Networks and Expert Systems
,”
Proceedings of the First International Conference on Inverse Probl Eng Theory Pract
,
ASME
,
New York
, pp.
275
282
.
16.
Raudensky
,
M.
,
Horsky
,
J.
, and
Krejsa
,
J.
, 1995, “
Usage of Neural Network for Coupled Parameter and Function Specification Inverse Heat Conduction Problem
,”
Int. Commun. Heat Mass Transfer
0735-1933,
22
(
5
), pp.
661
670
.
17.
Krejsa
,
J.
,
Woodbury
,
K. A.
,
Ratliff
,
J. D.
, and
Raudensky
,
M.
, 1999, “
Assessment of Strategies and Potential for Neural Networks in the Inverse Heat Conduction Problem
,”
Inverse Probl. Eng.
1068-2767,
7
, pp.
197
213
.
18.
Shiguemori Elcio
,
H.
,
Da Silva José DemÍSio
,
S.
, and
De Campos Velho Haroldo
,
F.
, 2004, “
Estimation of Initial Condition in Heat Conduction by Neural Network
,”
Inverse Probl. Eng.
1068-2767,
12
(
3
), pp.
317
328
.
19.
Riedmiller
,
M.
, and
Braun
,
H.
, 1993, “
A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm
,”
Proceedings of the IEEE International Conference on Neural Networks
,
San Francisco
, pp.
586
591
.
20.
Hagan
,
M. T.
,
Howard
,
B.
,
Demuth
,
M. H.
, and
Beale
,
M. H.
, 2002,
Neural Network Design
,
PWS
,
Boston
, Chap. 9.
21.
Haykin
,
S.
, 1998,
Neural Networks: A Comprehensive Foundation
,
Prentice-Hall
,
New Jersey
, p.
239
.
22.
Moller
,
M. F.
, 1993, “
A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning
,”
Neural Networks
0893-6080,
6
, pp.
525
533
.
23.
Battiti
,
R.
, 1992, “
First and Second Order Methods for Learning: Between Steepest Descent and Newton’s Method
,”
Neural Comput.
0899-7667,
4
(
2
), pp.
141
166
.
24.
Powell
,
M. J. D.
, 1977, “
Restart Procedures for the Conjugate Gradient Method
,”
Math. Program.
0025-5610,
12
, pp.
241
254
.
25.
MacKay
,
D. J. C.
, 1992, “
Bayesian Interpolation
,”
Neural Comput.
0899-7667,
4
, pp.
415
447
.
26.
Foresee
,
F. D.
, and
Hagan
,
M. T.
, 1997, “
Gauss-Newton Approximation to Bayesian Learning
,”
Proceedings of the International Joint Conference on Neural Networks
,
Houston, TX
, Vol.
3
, pp.
1930
1935
.
27.
Tuan
,
P. C.
,
Ji
,
C. C.
,
Fong
,
L. W.
, and
Huang
,
W. T.
, 1997, “
Application of Kalman Filtering With Input Estimation Technique to On-Line Cylindrical Inverse Heat Conduction Problems
,”
JSME Int. J., Ser. B
1340-8054,
40
(
1
), pp.
126
133
.
28.
Hopfield
,
J. J.
, 1986, “
Neurons With Graded Response Have Collective Computational Properties Like Those of Two-State Neurons
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
81
(
10
), pp.
3088
3092
.
29.
Hopfield
,
J. J.
, and
Tank
,
D. W.
, 1986, “
Computing With Neural Circuits: A Model
,”
Science
0036-8075,
233
(
4764
), pp.
625
633
.
30.
Deng
,
S.
, and
Hwang
,
Y.
, 2006, “
Applying Neural Networks to the Solution of Forward and Inverse Heat Conduction Problems
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
25–26
), pp.
4732
4750
.
31.
Patterson
,
D. W.
, 1998,
Artificial Neural Networks
,
Prentice-Hall
,
New York
, pp.
182
.
32.
1991,
Neural Networks: Concepts, Applications, and Implementations
,
P.
Antognetti
and
V.
Milutonovic
, eds.,
Prentice-Hall
,
Englewood Cliffs
, Vol.
I
, pp.
121
122
.
33.
Kreyszig
,
E.
, 1993,
Advanced Engineering Mathematics
,
7th Ed.
,
Wiley
,
New York
, pp.
648
649
.
You do not currently have access to this content.