The objective of this paper is to consider the thermodynamically consistent anisotropic plasticity model based on full decomposition of stress tensor into generalized deviatoric part and generalized spherical part of stress tensor. Two fundamental tensors αij and βij, which represent anisotropic material properties, are defined and can be considered as generalizations of the Kronecker delta symbol, which plays the main role in the theory of isotropic materials. Using two fundamental tensors αij and βij, the concept of total generalized “pressure” and pressure corresponding to the volumetric deformation is redefined. It is shown that the formulation of anisotropic plasticity in the case of incompressible plastic flow must be considered independently from the generalized hydrostatic pressure. Accordingly, a modification to the anisotropic Hill criterion is introduced. Based on experimental research, which has been published, the modified Hill (1948, “A Theory of the Yielding and Plastic Flow of Anisotropic Metals,” Proc. R. Soc. London, Ser. A, 193(1033), pp. 281–297;1950, Mathematical Theory of Plasticity, Clarendon, Oxford) criterion for anisotropic elastoplasticity is validated. The results are presented and discussed, and future studies are outlined.

1.
Hill
,
R.
, 1950,
Mathematical Theory of Plasticity
,
Clarendon
,
Oxford
.
2.
Hill
,
R.
, 1948, “
A Theory of the Yielding and Plastic Flow of Anisotropic Metals
,”
Proc. R. Soc. London, Ser. A
1364-5021,
193
(
1033
), pp.
281
297
.
3.
Woodthorpe
,
J.
, and
Pearce
,
R.
, 1970, “
The Anomalous Behaviour of Aluminium Sheet Under Balanced Biaxial Tension
,”
Int. J. Mech. Sci.
0020-7403,
12
, pp.
341
347
.
4.
Dodd
,
B.
, and
Caddell
,
R. M.
, 1984, “
On the Anomalous Behaviour of Anisotropic Sheet Metals
,”
Int. J. Mech. Sci.
0020-7403,
26
(
2
), pp.
113
118
.
5.
Bishop
,
J. W. F.
, and
Hill
,
R.
, 1951, “
A Theory of the Plastic Distortion of a Polycrystalline Aggregate Under Combined Stresses
,”
Philos. Mag.
0031-8086,
42
, pp.
414
427
.
6.
Bishop
,
J. W. F.
, and
Hill
,
R.
, 1951, “
A Theoretical Derivation of the Plastic Properties of the Plastic Properties of Polycrystalline Face-centered Metals
,”
Philos. Mag.
0031-8086,
42
, pp.
1298
1307
.
7.
Hutchinson
,
J. W.
, 1964, “
Plastic Deformation of B.C.C. Polycrystals
,”
J. Mech. Phys. Solids
0022-5096,
12
(
1
), pp.
25
33
.
8.
Bassani
,
J. L.
, 1977, “
Yield Characterization of Metals With Transversely Isotropic Plastic Properties
,”
Int. J. Mech. Sci.
0020-7403,
19
(
11
), pp.
651
660
.
9.
Hosford
,
W. F.
, 1985, “
Comments on Anisotropic Yield Criteria
,”
Int. J. Mech. Sci.
0020-7403,
27
(
7–8
), pp.
423
427
.
10.
Gotoh
,
M.
, 1977, “
A Theory of Plastic Anisotropy Based on a Yield Function of Fourth Order (Plane Stress State)—I/II
,”
Int. J. Mech. Sci.
0020-7403,
19
(
9
), pp.
505
512
;
Gotoh
,
M.
, 1977, “
A Theory of Plastic Anisotropy Based on a Yield Function of Fourth Order (Plane Stress State)—I/II
,”
Int. J. Mech. Sci.
0020-7403,
19
(
9
), pp.
513
520
.
11.
Arminjon
,
M.
,
Bacroix
,
B.
,
Imbault
,
D.
, and
Raphanel
,
J.
, 1994, “
A Forth Order Plastic Potentials for Anisotropic Metals and its Calculation From Texture Data
,”
Acta Mech.
0001-5970,
107
, pp.
33
51
.
12.
Barlat
,
F.
, and
Lian
,
J.
, 1989, “
Plastic Behavior and Stretchability of Sheet Metals. Part I: A Yield Function for Orthotropic Sheet Under Plane Stress Conditions
,”
Int. J. Plast.
0749-6419,
5
(
1
), pp.
51
66
.
13.
Barlat
,
F.
,
Lege
,
D. J.
, and
Brem
,
J. C.
, 1991, “
A Six-Component Yield Function for Anisotropic Materials
,”
Int. J. Plast.
0749-6419,
7
(
7
), pp.
693
712
.
14.
Barlat
,
F.
,
Becker
,
R. C.
,
Hayashida
,
Y.
,
Maeda
,
Y.
,
Yanagawa
,
M.
,
Chung
,
K.
,
Brem
,
J. C.
,
Lege
,
D. J.
,
Matsui
,
K.
,
Murtha
,
S. J.
, and
Hattori
,
S.
, 1997, “
Yielding Description of Solution Strengthened Aluminum Alloys
,”
Int. J. Plast.
0749-6419,
13
(
4
), pp.
385
401
.
15.
Karafillis
,
A. P.
, and
Boyce
,
M. C.
, 1993, “
A General Anisotropic Yield Criterion Using Bounds and a Transformation Weighting Tensor
,”
J. Mech. Phys. Solids
0022-5096,
41
(
12
), pp.
1859
1886
.
16.
Barlat
,
F.
,
Maeda
,
Y.
,
Chung
,
K.
,
Yanagawa
,
M.
,
Brem
,
J. C.
,
Hayashida
,
Y.
,
Lege
,
D. J.
,
Matsui
,
K.
,
Murtha
,
S. J.
,
Hattori
,
S.
,
Becker
,
R. C.
, and
Makosey
,
S.
, 1997, “
Yield Function Development for Aluminum Alloy Sheets
,”
J. Mech. Phys. Solids
0022-5096,
45
(
11–12
), pp.
1727
1763
.
17.
Barlat
,
F.
,
Brem
,
J. C.
,
Yoon
,
J. W.
,
Chung
,
K.
,
Dick
,
R. E.
,
Lege
,
D. J.
,
Pourboghrat
,
F.
,
Choi
,
S.-H.
, and
Chu
,
E.
, 2003, “
Plane Stress Yield Function for Aluminum Alloy Sheets—Part I: Theory
,”
Int. J. Plast.
0749-6419,
19
(
9
), pp.
1297
1319
.
18.
Bron
,
F.
, and
Besson
,
J.
, 2004, “
A Yield Function for Anisotropic Materials Application to Aluminum Alloys
,”
Int. J. Plast.
0749-6419,
20
(
4–5
), pp.
937
963
.
19.
Darrieulat
,
M.
, and
Montheillet
,
F.
, 2003, “
A Texture Based Continuum Approach for Predicting the Plastic Behaviour of Rolled Sheet
,”
Int. J. Plast.
0749-6419,
19
(
4
), pp.
517
546
.
20.
Stoughton
,
T. B.
, and
Yoon
,
J. W.
, 2004, “
A Pressure-Sensitive Yield Criterion Under a Non-Associated Flow Rule for Sheet Metal Forming
,”
Int. J. Plast.
0749-6419,
20
(
4–5
), pp.
705
731
.
21.
Kowalczyk
,
K.
, and
Gambin
,
W.
, 2004, “
Model of Plastic Anisotropy Evolution With Texture—Dependent Yield Surface
,”
Int. J. Plast.
0749-6419,
20
(
1
), pp.
19
54
.
22.
Hu
,
W.
, 2005, “
An Orthotropic Yield Criterion in a 3-D General Stress State
,”
Int. J. Plast.
0749-6419,
21
(
9
), pp.
1771
1796
.
23.
Hashiguchi
,
K.
, 2005, “
Generalized Plastic Flow Rule
,”
Int. J. Plast.
0749-6419,
21
(
2
), pp.
321
351
.
24.
Lukyanov
,
A. A.
, 2006,
Numerical Simulation of Irreversible Deformation of Micro- and Macro-Fracture of Anisotropic Solids and Structures
,
Cranfield University
.
25.
Anderson
,
C. E.
,
Cox
,
P. A.
,
Johnson
,
G. R.
, and
Maudlin
,
P. J.
, 1994, “
A Constitutive Formulation for Anisotropic Materials Suitable for Wave Propagation Computer Program-II
,”
Comput. Mech.
0178-7675,
15
, pp.
201
223
.
26.
Lademo
,
O.-G.
,
Hopperstad
,
O. S.
, and
Langseth
,
M.
, 1999, “
An Evaluation of Yield Criteria and Flow Rules for Aluminium Alloys
,”
Int. J. Plast.
0749-6419,
15
(
2
), pp.
191
208
.
You do not currently have access to this content.