The temporal-spatial focusing effect of the time-reversal method on the guided wave inspection in pipes was investigated theoretically in the current research with a transfer function. The amplitude of the time-reversed wave propagating along the pipes was not only determined by the characteristics of the defect and the location for observation but also by the location of the time-reversal transducers. Especially, the quantity of transducers distributed around the pipe in the circumferential direction was found to be important in applying such time-reversal method. The results demonstrate that the time-reversal method can be used to enhance the inspection energy for the guided wave inspection in pipes and to locate the defects in the circumferential directions. Once the time-reversed signals obtained from the guided wave inspection are applied on a numerical model, the defects can be recognized by the motion of the time-reversed wave transmitting along the pipe model. Numerical simulation and experimental results are provided in this paper to illustrate the validity of such defect-identifying method.

1.
Rose
,
J. L.
, 2002, “
A Baseline and Vision of Ultrasonic Guided Wave Inspection Potential
,”
ASME J. Pressure Vessel Technol.
0094-9930,
124
(
8
), pp.
273
282
.
2.
Niethammer
,
M.
, and
Laurence
,
J. J.
, 2000, “
Time-Frequency Representation of Lamb Waves Using the Reassigned Spectrogram
,”
J. Acoust. Soc. Am.
0001-4966,
107
(
5
), pp.
19
24
.
3.
Siqueira
,
M. H. S.
,
Gatts
,
C. E. N.
,
Dasilva
,
R. R.
, and
Rebello
,
J. M. A
.
, 2004, “
The Use of Ultrasonic Guided Waves and Wavelets Analysis in Pipe Inspection
,”
Ultrasonics
0041-624X,
41
, pp.
785
797
.
4.
Li
,
J.
, and
Rose
,
J. L.
, 2002, “
Angular-Profile Tuning of Guided Waves in Hollow Cylinders Using a Circumferential Phased Array
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
49
(
12
), pp.
1720
1729
.
5.
Li
,
J.
, and
Rose
,
J. L.
, 2001, “
Implementing Guided Wave Mode Control by Use of a Phased Transducer Array
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
48
(
3
), pp.
761
768
.
6.
Hayashi
,
T.
, and
Kawashima
,
K.
, 2003, “
Analysis of Flexural Mode Focusing by a Semianalytical Finite Element Method
,”
J. Acoust. Soc. Am.
0001-4966,
113
(
3
), pp.
1241
1248
.
7.
Zhang
,
L.
,
Luo
,
W.
, and
Rose
,
J. L.
, 2006, “
Ultrasonic Guided Wave Focusing Beyond Welds in a Pipeline
,”
Rev. Prog. Quant. Nondestr. Eval.
0743-0760,
25
, pp.
877
884
.
8.
Li
,
J.
, 2005, “
On Circumferential Disposition of Pipe Defects by Long-Range Ultrasonic Guided Waves
,”
ASME J. Pressure Vessel Technol.
0094-9930,
127
(
11
), pp.
530
537
.
9.
Fink
,
M.
, 1992, “
Time Reversal of Ultrasonic Fields—Part I: Basic Principles
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
39
(
5
), pp.
555
566
.
10.
Wu
,
F.
,
Thomas
,
J. L.
, and
Fink
,
M.
, 1992, “
Time Reversal of Ultrasonic Fields—Part II: Experimental Results
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
39
(
5
), pp.
567
578
.
11.
Roux
,
P.
,
Roman
,
B.
, and
Fink
,
M.
, 1997, “
Time-Reversal in an Ultrasonic Waveguide
,”
Appl. Phys. Lett.
0003-6951,
70
(
14
), pp.
1811
1813
.
12.
Roux
,
P.
, and
Fink
,
M.
, 2000, “
Time Reversal in a Waveguide: Study of the Temporal and Spatial Focusing
,”
J. Acoust. Soc. Am.
0001-4966,
107
(
5
), pp.
2418
2429
.
13.
Oestges
,
C.
,
Kim
,
A. D.
,
Papanicolaou
,
G.
, and
Paulraj
,
A. J.
, 2005, “
Characterization of Space-Time Focusing in Time-Reversed Random Fields
,”
IEEE Trans. Antennas Propag.
0018-926X,
53
(
1
), pp.
283
293
.
14.
Kim
,
S.
,
Kuperman
,
W. A.
,
Hodgkiss
,
W. S.
,
Song
,
H. C.
,
Edelmann
,
G.
, and
Akal
,
T.
, 2004, “
Echo-to-Reverberation Enhancement Using a Time Reversal Mirror
,”
J. Acoust. Soc. Am.
0001-4966,
115
(
4
), pp.
1525
1531
.
15.
Thomas
,
J. L.
, and
Fink
,
M.
, 1996, “
Ultrasonic Beam Focusing Through Tissue Inhomogeneities With a Time Reversal Mirror: Application to Transskull Therapy
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
43
(
6
), pp.
1122
1129
.
16.
Wang
,
C. H.
,
Rose
,
J. T.
, and
Chang
,
F. K.
, 2003, “
A Computerized Time-Reversal Method for Structural Health Monitoring
,”
Proc. SPIE
0277-786X,
5046
, pp.
48
58
.
17.
Ing
,
R. K.
, and
Fink
,
M.
, 1998, “
Time-Reversed Lamb Waves
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
45
(
4
), pp.
1032
1043
.
18.
Nunes
,
I.
, and
Negreira
,
C.
, 2005, “
Efficiency Parameters in Time Reversal Acoustics: Applications to Dispersive Media and Multimode Wave Propagation
,”
J. Acoust. Soc. Am.
0001-4966,
117
(
3
), pp.
1202
1209
.
19.
Pucket
,
A. D.
, and
Peterson
,
M. L.
, 2003, “
A Time-Reversal Mirror in a Solid Circular Waveguide Using a Single, Time-Reversal Element
,”
J. Acoust. Soc. Am.
0001-4966,
4
(
2
), pp.
31
36
.
20.
Puckett
,
A. D.
, and
Peterson
,
M. L.
, 2002, “
Fidelity of an Analytical Time-Reversal Mirror
,”
Rev. Prog. Quant. Nondestr. Eval.
0743-0760,
21
, pp.
945
952
.
21.
Montaldo
,
G.
,
Roux
,
P.
,
Derode
,
A.
,
Negreira
,
C.
, and
Fink
,
M.
, 2001, “
Generation of Very High Pressure Pulses With 1-bit Time Reversal in a Solid Waveguide
,”
J. Acoust. Soc. Am.
0001-4966,
110
(
5
), pp.
2849
2857
.
22.
Li
,
L. T.
,
He
,
C. F.
, and
Wu
,
B.
, 2004, “
Research on Restraining Dispersive Characteristics of Ultrasonic Guided Wave in a Long Pipe
,”
Journal of Data Acquisition and Processing
(in Chinese),
19
(
3
), pp.
297
301
.
23.
Wilcox
,
P. D.
,
Lowe
,
M. J. S.
, and
Cawley
,
P.
, 2001, “
A Signal Processing Technique to Remove the Effect of Dispersion From Guided Wave Signals
,”
Rev. Prog. Quant. Nondestr. Eval.
0743-0760,
20
, pp.
555
562
.
24.
Leutenegger
,
T.
, and
Dual
,
J.
, 2004, “
Non-Destructive Testing of Tubes Using a Time Reverse Numerical Simulation (TRNS) Method
,”
Ultrasonics
0041-624X,
41
(
10
), pp.
811
822
.
25.
Tourin
,
A.
,
Biest
,
F. V. D.
, and
Fink
,
M.
, 2006, “
Time Reversal of Ultrasound Through a Phononic Crystal
,”
Phys. Rev. Lett.
0031-9007,
96
, pp.
104301
.
26.
Ulrich
,
T. J.
, and
Johnson
,
P. A.
, 2006, “
Imaging Nonlinear Scatterers Applying the Time Reversal Mirror
,”
J. Acoust. Soc. Am.
0001-4966,
119
(
3
), pp.
1514
1518
.
27.
Hayashi
,
T.
, and
Murase
,
M.
, 2005, “
Defect Imaging With Guided Waves in a Pipe
,”
J. Acoust. Soc. Am.
0001-4966,
117
(
4
), pp.
2134
2140
.
28.
Auld
,
B. A.
, 1973,
Acoustic Fields and Waves in Solids
,
Krieger
,
Malabar, FL
.
29.
Lowe
,
M. J. S.
,
Alleyne
,
D. N.
, and
Cawley
,
P.
, 1998, “
The Mode Conversion of a Guided Wave by a Part-Circumferential Notch in a Pipe
,”
ASME J. Appl. Mech.
0021-8936,
65
(
3
), pp.
649
656
.
You do not currently have access to this content.