A higher order cylindrically guided ultrasonic wave was used for the detection and sizing of hidden pitting-type corrosion in the hidden crevice regions (between the pipe and the pipe supports) without lifting or disturbing the structural layout arrangement of the pipelines. The higher order circumferential guided waves were generated using a piezoelectric crystal based transducer, located at the accessible top region of the pipes, in a pulse-echo mode. By studying the experimental parameters such as dispersion, particle displacement, and wavelength of the ultrasonic guided wave modes, an appropriate higher order mode was selected for excitation using an appropriately designed acrylic angle wedge that conforms to the pipe’s outer curvature. A manual pipe crawler was designed with a provision for holding the wedge, and the essential hardware such as data acquisition card, encoder, etc., was integrated with the system so that the corrosion was mapped in real time during the scanning of the pipes. The system was validated on pipes ranging from 6in.to24in. outer diameters of wall thicknesses up to 12mm, by mapping defects as small as 1.5mm diameter and 25% penetration wall thickness. A 2D finite element model using ABAQUS® was used to understand the wave propagation in pipe wall and its interaction with pinhole-type defects.

1.
Ravenscroft
,
F.
,
Hill
,
R.
,
Duffill
,
C.
, and
Buttle
,
D.
, 1998, “
CHIME: A New Ultrasonic Method for Rapid Screening of Pipe Plate and Inaccessible Geometries
,”
ECNDT ’98—Proceedings of the European Conference on Nondestructive Testing
,
Copenhagen, Denmark
, May, http://www.esrtechnology.com/nndtc/chime/hois_98_e1.PDFhttp://www.esrtechnology.com/nndtc/chime/hois_98_e1.PDF
2.
Lamb
,
H.
, 1912, “
On Waves in an Elastic Plate
,”
Proc. R. Soc. London, Ser. A
0950-1207,
93
, pp.
114
128
.
3.
Gazis
,
D. C.
, 1959, “
Three-Dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders
,”
J. Acoust. Soc. Am.
0001-4966,
31
(
5
), pp.
568
573
.
4.
Viktorov
,
I. A.
, 1967,
Rayleigh and Lamb Waves: Physical Theory and Applications
,
Plenum
,
New York
.
5.
Silk
,
M. G.
, and
Bainton
,
K. F.
, 1979, “
The Propagation in Metal Tubing of Ultrasonic Wave Modes Equivalent to Lamb Waves
,”
Ultrasonics
0041-624X,
17
, pp.
11
19
.
6.
Alleyne
,
D.
, and
Cawley
,
P.
, 1994, “
The Practical Excitation and Measurement of Lamb Waves Using Piezoelectric Transducers
,”
Rev. Prog. Quant. Nondestr. Eval.
0743-0760,
13
, pp.
181
188
.
7.
Lowe
,
M. J. S.
,
Alleyne
,
D. N.
, and
Cawley
,
P.
, 1998, “
Defect Detection in Pipes Using Guided Waves
,”
Ultrasonics
0041-624X,
36
, pp.
147
154
.
8.
Cawley
,
P.
,
Lowe
,
M. J. S.
,
Alleyne
,
D. N.
,
Pavlakovic
,
B.
, and
Wilcox
,
P.
, 2003, “
Practical Long Range Guided Wave Inspection—Applications to Pipes and Rail
,”
Mater. Eval.
0025-5327,
61
, pp.
66
74
.
9.
Demma
,
A.
,
Cawley
,
P.
,
Lowe
,
M.
,
Roosenbrand
,
A. G.
, and
Pavlakovic
,
B.
, 2004, “
The Reflection of Guided Waves From Notches in Pipes: A Guide for Interpreting Corrosion Measurements
,”
NDT & E Int.
0963-8695,
37
, pp.
167
180
.
10.
Rose
,
J. L.
,
Dale
,
J.
, and
Spanner
, Jr.,
J.
, 1996, “
Ultrasonic Guided Wave NDE for Piping
,”
Mater. Eval.
0025-5327,
54
(
11
), pp.
1310
1313
.
11.
Barshinger
,
J.
,
Rose
,
J. L.
, and
Avioli
,
M. J.
, 2002, “
Guided Wave Resonance Tuning for Pipe Inspection
,”
ASME J. Pressure Vessel Technol.
0094-9930,
124
, pp.
303
310
.
12.
Balasubramaniam
,
K.
, 2002, “
Long Range Cylindrically Guided Wave Technique for Inspection
,”
Journal of the Korean Society for Non-Destructive Testing
,
23
(
4
), pp.
364
371
.
13.
Grace
,
O. D.
, and
Goodman
,
R. R.
, 1966, “
Circumferential Waves on Solid Cylinders
,”
J. Acoust. Soc. Am.
0001-4966,
39
, pp.
173
174
.
14.
Qu
,
J.
,
Berthelot
,
Y.
, and
Li
,
Y.
, 1996, “
Dispersion of Guided Circumferential Waves in a Circular Annulus
,”
Rev. Prog. Quant. Nondestr. Eval.
0743-0760,
15A
, pp.
169
176
.
15.
Liu
,
G.
, and
Qu
,
J.
, 1998, “
Guided Circumferential Waves in a Circular Annulus
,”
ASME J. Appl. Mech.
0021-8936,
65
, pp.
424
430
.
16.
Wang
,
D. W.
, 1998, “
Applications of Guided Wave Technique in the Petrochemical Industry
,”
Rev. Prog. Quant. Nondestr. Eval.
0743-0760,
18
, pp.
277
284
.
17.
Thompson
,
R. B.
,
Alers
,
G. A.
, and
Tennison
,
M. A.
, 1972, “
Application of Direct Electromagnetic Lamb Wave Generation to Gas Pipeline Inspection
,”
Proceedings of the 1972 IEEE Symposium
, p.
187
.
18.
Thompson
,
R. B.
, 1990, “
Physical Principles of Measurements With EMAT Transducers
,”
Physical Acoustics
,
Academic
,
New York
, Vol.
XIX
, pp.
157
200
.
19.
Salzburger
,
H. J.
, 1995, “
Long Range UT by Structural Ultrasonic Waves and Electromagnetic Acoustic Transducers (EMAT)
,”
16th Major International UT Conference and Exhibition
, Jul. 5–7,
Edinburgh
.
20.
Frost
,
H. M.
, 1979, “
Electromagnetic Ultrasound Transducers: Principles, Practice, and Applications
,” in
Physical Acoustics
,
R. N.
Thurston
and
A. D.
Pierce
, eds.,
Academic
,
San Diego
, Vol.
14
, pp.
179
276
.
21.
Maxfield
,
B. W.
, 2003, in
Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization
,
T.
Kundum
, ed.,
CRC
,
Boca Raton, FL
, Chap. 8.
22.
Valle
,
C.
,
Niethammer
,
M.
,
Qu
,
J.
, and
Jacobs
,
L. J.
, 2001, “
Crack Characterization Using Guided Circumferential Waves
,”
J. Acoust. Soc. Am.
0001-4966,
110
(
3
), pp.
1282
1290
.
23.
Auld
,
B. A.
, 1990,
Acoustic Fields and Waves in Solids
,
2nd ed.
,
Krieger
,
New York
.
24.
Luo
,
W.
,
Rose
,
J. L.
, and
Kwun
,
H.
, 2004, “
A Two Dimensional Model for Crack Sizing in Pipes
,”
Rev. Prog. Quant. Nondestr. Eval.
0743-0760,
23
, pp.
187
192
.
25.
Ginzel
,
R. K.
, and
Kanters
,
W. A.
, 2002, “
Pipeline Corrosion and Cracking and the Associated Calibration Considerations for Same Side Sizing Applications
,” http://www.ndt.net/article/v07n07/ginzel_r/ginzel_r.htmhttp://www.ndt.net/article/v07n07/ginzel_r/ginzel_r.htm
26.
Lord
,
W.
,
Ludwig
,
R.
, and
You
,
Z.
, 1990, “
Developments in Ultrasonic Modeling With Finite Element Analysis
,”
J. Nondestruct. Eval.
0195-9298,
9
, pp.
129
143
.
27.
Lin
,
S.
,
Ito
,
T.
,
Kawashima
,
K.
, and
Nagamizo
,
H.
, 1998, “
Finite Element Analysis of Multiple Wave Scattering From Defects within a Circular Pipe
,”
Rev. Prog. Quant. Nondestr. Eval.
0743-0760,
18
, pp.
79
85
.
28.
Lin
,
S.
,
Kawashima
,
K.
, and
Ito
,
T.
, 2000, “
Wave Propagation Analysis by Finite Element Method for Flaw Sizing of Circular Pipes
,” http://www.ndt.net/article/wcndt00/papers/idn207/idn207.htmhttp://www.ndt.net/article/wcndt00/papers/idn207/idn207.htm
29.
Rose
,
J. L.
,
Cho
,
Y.
, and
Ditri
,
J. L.
, 1994, “
Cylindrical Guided Wave Leakage Due to Liquid Loading
,”
Rev. Prog. Quant. Nondestr. Eval.
0743-0760,
13
, pp.
259
266
.
30.
Gaunaurd
,
G. C.
, 1985, “
Sonar Cross Sections of Bodies Partially Insonified by Finite Sound Beams
,”
IEEE J. Ocean. Eng.
0364-9059,
OE-10
(
3
),
213
230
.
You do not currently have access to this content.