A material configuration of central importance in composite materials or in protective coating technology is a thin film of one material deposited onto a substrate of a different material. Fabrication of such a structure inevitably gives rise to stress in the film due to lattice mismatch, differing coefficient of thermal expansion, chemical reactions, or other physical effects. Therefore, in general, the weakest link in this composite system often resides at the interface between the thin film and the substrate. In order to make multilayered electronic devices and structural composites with long-term reliability, the fracture behavior of the material interfaces must be known. This project offers an innovative testing procedure of using a spiral notch torsion bar method for the determination of interface fracture toughness that is applicable to thin coating materials in general. The feasibility study indicated that this approach for studying thin film interface fracture is repeatable and reliable, and the demonstrated test method closely adheres to and is consistent with classical fracture mechanics theory.

1.
Lyshevski
,
S. E.
, 2000,
Nano- and Microelectromechanical Systems
,
CRC
,
Boca Raton, FL
.
2.
Madou
,
M.
, 1997,
Fundamentals of Microfabrication
,
CRC
,
Boca Raton, FL
.
3.
Ray
,
A. K.
, 2000, “
Failure Mode of Thermal Barrier Coatings for Gas Turbine Vanes Under Bending
,”
Int. J. Turbo Jet Engines
0334-0082,
17
, pp.
1
24
.
4.
Pint
,
B. A.
,
Wright
,
I. G.
,
Lee
,
W. Y.
,
Zhang
,
Y.
,
Prüssner
,
K.
, and
Alexander
,
K. B.
, 1998, “
Substrate and Bond Coat Compositions: Factors Affecting Alumina Scale Adhesion
,”
Mater. Sci. Eng., A
0921-5093,
245
, pp.
201
211
.
5.
Evans
,
A. G.
,
Hutchinson
,
J. W.
, and
He
,
M. Y.
, 1999, “
Micromechanics Model for the Detachment of Residually Compressed Brittle Films and Coatings
,”
Acta Mater.
1359-6454,
47
, pp.
1513
1522
.
6.
Wright
,
P. K.
, and
Evans
,
A. G.
, 1999, “
Mechanisms Governing the Performance of Thermal Barrier Coatings
,”
Curr. Opin. Solid State Mater. Sci.
1359-0286,
4
, pp.
255
265
.
7.
Mumm
,
D. R.
,
Evans
,
A. G.
, and
Spitsberg
,
I.
, 2001, “
Characterization of a Cycle Displacement Instability for a Thermally Grown Oxide in a Thermal Barrier System
,”
Acta Mater.
1359-6454,
49
, pp.
2329
2340
.
8.
Ruud
,
J. A.
et al.
, 2001, “
Strength Degradation and Failure Mechanism of Electron-Beam Physical-Vapor-Deposited Thermal Barrier Coatings
,”
J. Am. Ceram. Soc.
0002-7820,
84
, pp.
1545
1552
.
9.
Karlsson
,
A. M.
, and
Evans
,
A. G.
, 2001, “
A Numerical Model for the Cyclic Instability of Thermally Grown Oxides in Thermal Barrier Systems
,”
Acta Mater.
1359-6454,
49
, pp.
1793
1804
.
10.
Tolpygo
,
V.
, and
Clarke
,
D. R.
, 2000, “
Surface Rumpling of a (Ni, Pt) Al Bond Coat Induced by Cyclic Oxidation
,”
Acta Mater.
1359-6454,
48
, pp.
3283
3293
.
11.
Williams
,
M. L.
, 1959, “
The Stress Around a Fault or Crack in Dissililar Media
,”
Bull. Seismol. Soc. Am.
0037-1106,
49
, pp.
199
204
.
12.
Erdogan
,
F.
, 1965, “
Stress Distribution in Bounded Dissimilar Materials With Cracks
,”
ASME J. Appl. Mech.
0021-8936, pp.
403
410
.
13.
Rice
,
J. R.
, 1988, “
Elastic Fracture Mechanics Concepts for Interfacial Cracks
,”
ASME J. Appl. Mech.
0021-8936,
55
, pp.
98
103
.
14.
Shih
,
C. F.
, 1991, “
Cracks on Bimaterial Interfaces: Elasticity and Plasticity Aspects
,”
Mater. Sci. Eng., A
0921-5093,
143
, pp.
77
90
.
15.
Hutchinson
,
J. W.
, and
Suo
,
Z.
, 1992, “
Mixed Mode Cracking in Layered Materials
,”
Adv. Appl. Mech.
0065-2156,
29
, pp.
63
191
.
16.
Turner
,
M. R.
, and
Evans
,
A. G.
,1996, “
An Experimental Study of the Mechanisms of Crack Extension Along an Oxide/Metal Interface
,”
Acta Mater.
1359-6454,
44
(
3
), pp.
863
871
.
17.
Charalambides
,
P. G.
,
Lund
,
J.
,
Evans
,
A. G.
, and
McMeeking
,
R. M.
, 1989, “
A Test Specimen for Determining the Fracture Resistance Bimaterial Interface
,”
ASME J. Appl. Mech.
0021-8936,
55
, pp.
77
82
.
18.
Suo
,
Z.
, and
Hutchinson
,
J. W.
, 1989, “
Sandwich Test Specimens for Measuring Interface Crack Toughness
,”
Mater. Sci. Eng., A
0921-5093,
107
, pp.
135
143
.
19.
Stiger
,
M. J.
,
Ortman
,
L. A.
,
Pettie
,
F. S.
, and
Meier
,
G. H.
, 1999, “
Measurement of Interfacial Toughness in Thermal Barrier Coating System by Indentation
,” ASTM Annual Program Review.
20.
Wang
,
J.
,
Weaver
,
R. L.
, and
Sottos
,
N. R.
, 2002, “
A Parametric Study of Laser Induced Thin Film
,”
Exp. Mech.
0014-4851,
42
(
1
), pp.
74
83
.
21.
Gupta
,
V.
,
Argon
,
A. S.
,
Cornie
,
J. A.
, and
Parks
,
D. M.
, 1992, “
Measurement of Interface Strength by a Laser Spallation Technique
,”
J. Mech. Phys. Solids
0022-5096,
40
, pp.
141
180
.
22.
Wang
,
J. A.
,
Liu
,
K. C.
,
McCabe
,
D. E.
, and
David
,
S. A.
, 2000, “
Using Torsion Bar Testing to Determine Fracture Toughness, KIC
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
23
, pp.
45
56
.
23.
Wang
,
J. A.
,
Liu
,
K. C.
, and
McCabe
,
D. E.
, 2002, “
An Innovative Technique for Measuring Fracture Toughness of Metallic and Ceramic Materials
,”
Fatigue and Fracture Mechanics
, Vol.
33
, pp.
757
770
.
24.
Wang
,
J. A.
, 2003, “
Oak Ridge National Laboratory Spiral Notch Torsion Test System
,”
Journal of Practical Failure Analysis
,
3
(
4
).
25.
Wang
,
J. A.
, and
Liu
,
K. C.
, 2003, “
A New Approach To Evaluate Fracture Toughness of Structural Materials
,”
Proceedings of ASME 2003 Pressure Vessel and Piping
.
26.
Li
,
H.-X.
,
Jones
,
R. H.
,
Hirth
,
J. P.
, and
Gelles
,
D. S.
, 1998, “
Fracture Toughness of the F-82H Steel:Effect of Loading Modes, Hydrogen, and Temperature
,”
J. Nucl. Mater.
0022-3115,
233
, pp.
258
263
.
27.
Li
,
H.-X.
,
Jones
,
R. H.
,
Hirth
,
J. P.
, and
Gelles
,
D. S.
, 1994, “
Effect of Loading Mode on the Fracture Toughness of a Reduced-Activation Ferritic/Martensitic Stainless Steel
,”
J. Nucl. Mater.
0022-3115,
212–215
, pp.
741
745
.
28.
ASTM Document No. E1152, “
Test Method for Determining J-R Curves
,”
29.
Ma
,
Q.
, and
Clarke
,
D. R.
, 1993, “
Stress Measurement in Single-Crystal and Polycrystalline Ceramics Using Their Optical Fluorescence
,”
J. Am. Ceram. Soc.
0002-7820,
76
, p.
1433
.
30.
Lipkin
,
M.
, and
Clarke
,
D. R.
, 1996, “
Measurement of the Stress in Oxide Scales Formed by Oxidation of Alumina-Forming Alloys
,”
Oxid. Met.
0030-770X,
45
, p.
267
.
31.
Hsueh
,
C. H.
, 2002, “
Modeling of Elastic Deformation of Multilayers due to Residual Stresses and External Bending
,”
J. Appl. Phys.
0021-8979,
91
(
12
), pp.
9652
9656
.
32.
O’Dowd
,
N. P.
,
Shih
,
C. F.
, and
Stout
,
M. G.
, 1992, “
Test Geometries for Measuring Interface Fracture Toughness
,”
Int. J. Solids Struct.
0020-7683,
29
(
5
), pp.
571
589
.
33.
Ritchie
,
R. O.
,
Cannon
,
R. M.
,
Dalgleish
,
B. J.
,
Dauskardt
,
R. H.
, and
McNaney
,
J. M.
, 1993, “
Mechanics and Mechanisms of Crack Growth at or Near Ceramic-Metal Interfaces: Interface Engineering Strategies for Promoting Toughness
,”
Mater. Sci. Eng., A
0921-5093,
166
, pp.
221
235
.
34.
Shih
,
C. F.
, and
Asaro
,
R. J.
, 1988, “
Elastic-Plastic Analysis of Cracks on Bimaterial Interfaces: Part I. Small Scale Yielding
,”
ASME J. Appl. Mech.
0021-8936,
55
, pp.
299
316
.
35.
Shih
,
C. F.
,
Moran
,
B.
, and
Nakamura
,
T.
, 1986, “
Energy Release Rate Along a Three-Dimensional Crack Front in a Thermally Stressed Body
,”
Int. J. Fract.
0376-9429,
30
, pp.
79
102
.
36.
Suo
,
Z.
, 1990, “
Singularities, Interfaces and Cracks in Dissimilar Anisotropic Media
,”
Proc. R. Soc. London, Ser. A
1364-5021,
427
, pp.
331
358
.
37.
1994,
ASM Engineered Materials Reference Book
,
2nd ed.
,
M.
Bauccio
, ed.,
ASM International
,
Materials Park, OH
.
38.
MatWeb Material Property Data: Alumina, Alpha Al2O3, http://www.matweb.com/SpecificMaterial.asp?bassnum=BA1A&group=General, accessed Oct. 21, 2004.
39.
Schutze
,
M.
, 1997,
Fundamental Aspects of High Temperature Corrosion
,
D. A.
Shores
,
R.
Rapp
, and
P. Y.
Hou
, eds.,
Electro-Chemical Society
,
Pennington, NJ
.
40.
Mitamura
,
Y.
, and
Wang
,
Y.
, 1994, “
Fracture Toughness of Single Crystal Alumina in Air and a Simulated Body Environment
,”
J. Biomed. Mater. Res.
0021-9304,
28
(
7
), pp.
813
817
.
You do not currently have access to this content.