Deformation and fracture behavior of several formable automotive aluminum alloys and steels have been assessed experimentally at room temperature through standard uniaxial tension, plane strain tension, and hemispherical dome tests. These materials exhibit the same deformation sequence: normally uniform elongation followed by diffuse necking, then localized necking in the form of crossed intense-shear bands, and finally fracture. The difference among these alloys lies primarily with respect to the point at which damage (i.e., voiding) starts. Damage develops earlier in the steel samples, although in all cases very little damage is observed prior to the onset of shear instability. A unified finite element model has been developed to reproduce this characteristic deformation sequence. Instability is triggered by the introduction of microstructural inhomogeneities rather than through the commonly utilized Gurson-Tvergaard-Needleman damage model. The predicted specimen shape change, shear band characteristics, distribution of strain, and the fracture modes for steels and aluminum alloys are all in good agreement with the experimental observations.

1.
Clift
,
S. E.
,
Hartley
,
P.
,
Sturgess
,
C. E. N.
, and
Rowe
,
G. W.
, 1990, “
Fracture Prediction in Plastic Deformation Processes
,”
Int. J. Mech. Sci.
0020-7403,
32
, pp.
1
17
.
2.
Takuda
,
H.
,
Mori
,
K.
,
Takakura
,
N.
, and
Yamaguchi
,
K.
, 2000, “
Finite Element Analysis of Limit Strains in Biaxial Stretching of Sheet Metals Allowing for Ductile Fracture
,”
Int. J. Mech. Sci.
0020-7403,
42
, pp.
785
798
.
3.
Duan
,
X.
,
Velay
,
X.
, and
Sheppard
,
T.
, 2004, “
Application of Finite Element Method in the Hot Extrusion of Aluminium Alloys
,”
Mater. Sci. Eng., A
0921-5093,
369
, pp.
66
75
.
4.
Oyane
,
M.
,
Sato
,
T.
,
Okimoto
,
K.
, and
Shima
,
S.
, 1980, “
Criteria for Ductile Fracture and Their Application
,”
J. Mech. Work. Technol.
0378-3804,
4
, pp.
65
81
.
5.
Rice
,
J. R.
, and
Tracey
,
D. M.
, 1969, “
On Ductile Enlargement of Holes in Triaxial Stress Field
,”
J. Mech. Phys. Solids
0022-5096,
17
, pp.
201
217
.
6.
Lemaitre
,
J.
, 1985, “
A Continuous Damage Mechanics Model for Ductile Fracture
,”
ASME J. Eng. Mater. Technol.
0094-4289,
107
, pp.
83
89
.
7.
Gurson
,
A. L.
, 1977, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part 1: Yield Criteria and Flow Rules for Porous Ductile Media
,”
ASME J. Eng. Mater. Technol.
0094-4289,
99
, pp.
2
15
.
8.
Tvergaard
,
V.
, and
Needleman
,
A.
, 1984, “
Analysis of the Cup-Cone Fracture in a Round Tensile Bar
,”
Acta Metall.
0001-6160,
32
, pp.
157
169
.
9.
Spencer
,
K.
,
Corbin
,
S. F.
, and
Lloyd
,
D. J.
, 2002, “
The Influence of Iron Content on the Plane Strain Fracture Behaviour of AA 5754 Al-Mg Sheet Alloys
,”
Mater. Sci. Eng., A
0921-5093,
325
, pp.
394
404
.
10.
Needleman
,
A.
, and
Tvergaard
,
V.
, 1992, “
Analyses of Plastic Flow Localization in Metals
,”
Appl. Mech. Rev.
0003-6900,
45
, pp.
S3
-
S18
.
11.
Trabtafyllidis
,
N.
,
Needleman
,
A.
, and
Tvergaard
,
V.
, 1982, “
On the Development of Shear Bands in Pure Bending
,”
Int. J. Solids Struct.
0020-7683,
18
, pp.
121
138
.
12.
Abeyaratne
,
R.
, and
Triantafyllidis
,
N.
, 1981, “
Emergence of Shear Bands in Plane Strain
,”
Int. J. Solids Struct.
0020-7683,
17
, pp.
1113
1134
.
13.
Christoffersen
,
J.
, and
Hutchinson
,
J. W.
, 1979, “
Class of Phenomenological Corner Theories of Plasticity
,”
J. Mech. Phys. Solids
0022-5096,
27
, pp.
465
487
.
14.
Duan
,
X.
,
Jain
,
M.
,
Metzger
,
D. R.
,
Kang
,
J.
,
Wilkinson
,
D. S.
, and
Embury
,
J. D.
, 2005, “
Prediction of Shear Localization During Large Deformation of a Continuous Cast Al-Mg Sheet
,”
Mater. Sci. Eng., A
0921-5093,
394
, pp.
192
203
.
15.
Metzger
,
D. R.
,
Duan
,
X.
, and
Jain
,
M.
, 2005, “
Numerical Simulation of Sample Scale Intense Shear Bands in Uniaxial Tension Test of Aluminum Alloys
,”
ASME/JSME Pressure Vessels and Piping Conference 2005 Proceeding
, Paper No. PVP2005-71383.
16.
Duan
,
X.
,
Jain
,
M.
, and
Wilkinson
,
D. S.
, 2006, “
Development of a Heterogeneous Microstructurally Based Finite Element Model for the Prediction of Forming Limit Diagram for Sheet Material
,”
Metall. Mater. Trans. A
1073-5623,
37
, pp.
3489
3501
.
17.
Jain
,
M.
, 2000, “
Simple Test to Assess the Formability of Tailor-Welded Blanks
,”
Int. J. Form. Processes
1292-7775,
3
, pp.
185
212
.
18.
Jain
,
M.
, and
Allin
,
J.
, 1994, “
Analysis of Experimental Variability of Forming Limit Diagrams
,”
Proceedings of the 39th SAMPE Symposium
, pp.
2564
2577
.
19.
ARAMIS 4.7, 2001, GOM mbH, Braunschweig, Germany.
20.
MSC.Software Corporation
, 2005, MSC.Marc Volume A: Theory and User Information.
21.
Hill
,
R.
, 1948, “
A Theory of Yielding and Plastic Flow of Anisotropic Metals
,”
Proc. R. Soc. London, Ser. A
1364-5021,
193
, pp.
281
297
.
22.
Kuroda
,
M.
, 2004, “
A Phenomenological Plasticity Model Accounting for Hydrostatic Stress-Sensitivity and Vertex-Type of Effect
,”
Mech. Mater.
0167-6636,
36
, pp.
285
297
.
23.
Moore
,
M.
, and
Bate
,
P.
, 2002, “
Microstructural Inhomogeneity and Biaxial Stretching Limits in Aluminium Alloy AA6016
,”
J. Mater. Process. Technol.
0924-0136,
125–126
, pp.
258
266
.
24.
Spencer
,
K.
,
Corbin
,
S. F.
, and
Lloyd
,
D. J.
, 2002, “
Notch Fracture Behaviour of 5754 Automotive Aluminium Alloys
,”
Mater. Sci. Eng., A
0921-5093,
332
, pp.
81
90
.
25.
Voce
,
E.
, 1948, “
The Relationship between Stress and Strain for Homogeneous Deformation
,”
J. Inst. Met.
0020-2975,
74
, pp.
537
562
.
26.
Hollomon
,
J. H.
, 1945, “
Tensile Deformation
,”
Trans. AIME
0096-4778,
162
, pp.
268
290
.
27.
Barlat
,
F.
,
Brem
,
J. C.
, and
Yoon
,
J. W.
, 2003, “
Plane Stress Yield Function for Aluminum Alloy Sheets—Part 1: Theory
,”
Int. J. Plast.
0749-6419,
19
, pp.
1297
1319
.
You do not currently have access to this content.