Welding generates thermal distortion and residual stress, and it is well known that they affect the performance of welded structures by contributing to brittle fracture, fatigue, buckling deformation, and stress-corrosion cracking. Welding distortions and residual stresses can possibly be controlled and reduced by using countermeasures. Not only thermal stress behavior but also the prediction of the microstructural phase during welding heat cycles is very important. High-strength steels or martensitic stainless steels are used in many power plant components, and the effect of phase transformation on the mechanical behavior during welding of these steels becomes much larger than that of mild steels and austenitic stainless steels. Simultaneous simulations of the thermal stress and microstructure during welding are necessary for a precise evaluation. In this paper, an analytical method and several applications using actual components are introduced in order to emphasize the effect of the microstructure on the weld residual stress analysis.

1.
Satoh
,
K.
, 1972, “
Transient Thermal Stresses of Weld Heat-Affected Zone by Both-Ends-Fixed Bar Analogy
,”
Trans. Jpn. Weld. Soc.
0385-9282,
3
(
1
), pp.
125
134
.
2.
Satoh
,
K.
, 1972, “
Thermal Stresses Developed in High-Strength Steels Subjected to Thermal Cycles Simulating Weld Heat-Affected Zone
,”
Trans. Jpn. Weld. Soc.
0385-9282,
3
(
1
), pp.
135
142
.
3.
Itoh
,
Y.
,
Nagata
,
K.
,
Yanuki
,
T.
, and
Mori
,
T.
, 1984, “
Mechanical Properties of Steels Subjected to Thermal Prestraining Cycles and its Application to Deformation Analysis of Weld Joint
,”
Q. J. Jpn. Weld. Soc.
0288-4771,
52
(
3
), pp.
314
319
, in Japanese.
4.
Itoh
,
Y.
,
Nagata
,
K.
,
Fukakura
,
J.
, and
Mori
,
T.
, 1984, “
The Effect of Local Heat Treatment at Weld Zone on Transient Thermal Stresses and Residual Stresses of 13Cr Cast Steel
,”
Q. J. Jpn. Weld. Soc.
0288-4771,
2
(
1
), pp.
83
88
, in Japanese.
5.
Itoh
,
Y.
,
Nagata
,
K.
,
Yanuki
,
T.
, and
Mori
,
T.
, 1984, “
Transient Thermal Stresses and Residual Stresses of 13Cr Cast Steels During Welding
,”
Q. J. Jpn. Weld. Soc.
0288-4771,
2
(
2
), pp.
348
354
, in Japanese.
6.
Itoh
,
Y.
, and
Tanaka
,
K.
, 1985, “
Residual Stress Characteristics of 13Cr Cast Steel Weldments Prepared With Austenitic Weld Metal
,”
Q. J. Jpn. Weld. Soc.
0288-4771,
3
(
3
), pp.
604
611
, in Japanese.
7.
Itoh
,
Y.
, 1985, “
Mechanical Properties of Weld Metals Subjected to Thermal Prestraining Cycles and its Application to Deformation Analysis of Weld Joint
,”
Q. J. Jpn. Weld. Soc.
0288-4771,
3
(
4
), pp.
862
869
, in Japanese.
8.
Itoh
,
Y.
,
Saitoh
,
Y.
,
Fukakura
,
J.
, and
Kashiwaya
,
H.
, 1986, “
Multi-Thermal Cycles Simulation of Transient Thermal Stresses of 13Cr Cast Steels During Multi-Pass Welding
,”
Q. J. Jpn. Weld. Soc.
0288-4771,
4
(
2
), pp.
423
429
, in Japanese.
9.
Vincent
,
Y.
,
Petit-Grostabussiat
,
S.
, and
Jullien
,
J. F.
, 2001, “
Thermal, Metallurgical, Mechanical Simulations and Experimental Validations of Residual Stresses in the Heat Affected Zone
,”
Document for the Sixth International Seminar on Numerical Analysis of Weldability
,
Graz-Seggau
,
Austria
, pp.
1
21
.
10.
Volden
,
L.
,
Gundersen
,
Ø.
, and
Rørvik
,
G.
, 1999, “
Development of Residual Stresses in High Strength Low Allow Steel
,”
Proceedings of the Ninth International Offshore and Polar Engineering Conference and Exhibition
,
Brest
,
France
, ISOPE-99-JSC-169, Vol.
4
, pp.
134
139
.
11.
Gundersen
,
Ø.
,
Zhang
,
Z.
,
Volden
,
L.
,
Rørvik
,
G.
, and
Akselen
,
O. M.
, 1999, “
Modeling of Residual Stresses in Weld Simulated Restrained C–Mn Steel Specimens
,”
Proceedings of the Ninth International Offshore and Polar Engineering Conference and Exhibition
,
Brest
,
France
, ISOPE-99-JSC-141, Vol.
4
, pp.
187
194
.
12.
Ashby
,
M. F.
, and
Easterling
,
K. E.
, 1982, “
A First Report on Diagrams for Grain Growth in Welds
,”
Acta Metall.
0001-6160,
30
, pp.
1969
1978
.
13.
Kirkaldy
,
J. S.
, and
Venugopalan
,
D.
, 1983, “
Prediction of Microstructure and Hardenability in Low Alloy Steels
,”
Proceedings of the International Conference on Phase Transformation in Ferrous Alloys
,
AIME
, pp.
125
148
.
14.
Bhole
,
S. D.
, and
Adil
,
G. K.
, 1992, “
HAZ Hardness and Microstructure Predictions of Arc Welded Steels, I. Review of Predictive Models
,”
Can. Metall. Q.
0008-4433,
31
(
2
), pp.
151
157
.
15.
Bhole
,
S. D.
, and
Adil
,
G. K.
, 1992, “
HAZ Hardness and Microstructure Predictions of Arc Welded Steels, II. CCT Diagram Method
,”
Can. Metall. Q.
0008-4433,
31
(
2
), pp.
159
165
.
16.
Mukai
,
A.
,
Nakano
,
T.
,
Okamoto
,
H.
, and
Morita
,
K.
, 2000, “
Investigation on MAG Wires for Building Structure
,”
Journal of Steel Construction Engineering
,
7
(
26
), pp.
13
25
, in Japanese.
17.
Mochizuki
,
M.
,
Hayashi
,
M.
, and
Hattori
,
T.
, 2000, “
Residual Stress Distribution Depending on Welding Sequence in Multi-Pass Welded Joints With X-Shaped Groove
,”
ASME J. Pressure Vessel Technol.
0094-9930,
122
(
1
), pp.
27
32
.
18.
Mochizuki
,
M.
,
Hattori
,
T.
, and
Nakakado
,
K.
, 2000, “
Residual Stress Reduction and Fatigue Strength Improvement by Controlling Welding Pass Sequences
,”
ASME J. Eng. Mater. Technol.
0094-4289,
122
(
1
), pp.
108
112
.
19.
Nakagomi
,
T.
, 2001, “
Control of Interpass Temperature in Beam-to-Column Structures of Steel Framed Structures
,”
Structural Technology
,
14
(
5
), pp.
18
25
, in Japanese.
20.
Okazawa
,
T.
,
Sakamoto
,
S.
,
Kuramochi
,
M.
,
Fukai
,
S.
, and
Yamada
,
K.
, 2001, “
Study on Influence of Heat Input and Inter-pass Temperature on the Mechanical Properties and the Execution Efficiency of Weld Joints in Steel Structures
,”
Journal of Steel Construction Engineering
,
8
(
31
), pp.
1
10
, in Japanese.
21.
Miyazaki
,
K.
,
Mochizuki
,
M.
,
Kanno
,
S.
,
Hayashi
,
M.
,
Shiratori
,
M.
, and
Yu
,
Q.
, 2002, “
Analysis of Stress Intensity Factor due to Surface Crack Propagation in Residual Stress Fields Caused by Welding
,”
JSME Int. J., Ser. A
1340-8046,
45
(
2
), pp.
199
207
.
22.
Mochizuki
,
M.
,
Toyoda
,
M.
,
Pasquale
,
P.
,
Veneziano
,
C.
, and
Burget
,
W.
, 2002, “
Numerical Simulation of Welding Heat Cycles During Multi-Pass Welding and Their Effects on Joint Performance
,”
Mathematical Modelling of Weld Phenomena 6
,
H.
Cerjak
, ed.,
Maney
,
London
, pp.
671
683
.
23.
Johnson
,
W. A.
, and
Mehl
,
R. F.
, 1939, “
Reaction Kinetics in Process of Nucleation and Growth
,”
J. Mol. Struct.: THEOCHEM
0166-1280,
135
, pp.
416
458
.
24.
Avrami
,
M.
, 1939, “
Kinetics of Phase Change. I: General Theory
,”
J. Chem. Phys.
0021-9606,
7
, pp.
103
112
.
25.
Avrami
,
M.
, 1940, “
Kinetics of Phase Change. II: Transformation-Time Relations for Random Distribution of Nuclei
,”
J. Chem. Phys.
0021-9606,
8
, pp.
212
224
.
26.
Avrami
,
M.
, 1941, “
Kinetics of Phase Change. III: Granulation, Phase Change and Microstructure
,”
J. Chem. Phys.
0021-9606,
9
, pp.
177
184
.
27.
Koistinen
,
D. P.
, and
Marbuerger
,
R. E.
, 1959, “
A General Equation Prescribing Extend of Austenite-Martensite Transformation in Pure Fe–C Alloys and Plain Carbon Steels
,”
Acta Metall.
0001-6160,
7
, pp.
50
60
.
28.
Leblond
,
J. B.
, and
Devaux
,
J. C.
, 1984, “
A New Kinetic Model for Anisothermal Metallurgical Transformations in Steels Including Effect of Austenite Grain Size
,”
Acta Metall.
0001-6160,
32
(
1
), pp.
137
146
.
29.
Leblond
,
J. B.
,
Mottet
,
G.
, and
Devaux
,
J. C.
, 1986, “
A Theoretical and Numerical Approach to the Plastic Behavior of Steels During Phase Transformation
,”
J. Mech. Phys. Solids
0022-5096,
34
, pp.
395
432
.
30.
Thors
,
T.
, 1998, “
Thermomechanical Calculation of Quench Distortion With Application to Case Hardening of Steel
,”
Scand. J. Metall.
0371-0459,
27
, pp.
159
170
.
31.
Ronda
,
J.
, and
Oliver
,
G. J.
, 2000, “
Consistent Thermo-Mechamo-Metallurgical Model of Welded Steel With Unified Approach to Derivation of Phase Evoluation Laws and Transformation-Induced Plasticity
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
189
, pp.
361
417
.
32.
Kim
,
J.
,
Im
,
S.
, and
Kim
,
H.-G.
, 2005, “
Numerical Implementation of a Thermo-Elasto-Plastic Constitutive Equation in Consideration of Transformation Plasticity
,”
International Journal of Plasticity
,
21
, pp.
1384
1408
.
33.
Bertero
,
V. V.
,
Anderson
,
J. C.
, and
Krawinkler
,
H.
, 1994,
Performance of Steel Building Structures During the Northridge Earthquake
,
University of California at Berkeley
, Report No. UCB/EERC-94–09.
34.
Toyoda
,
M.
, 1995, “
How Steel Structures Fared in Japan’s Great Earthquake
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
74
(
12
), pp.
31
42
.
35.
1996,
Japanese Architectural Standard Specification (JASS 6). Steel Work
,
7th ed.
,
Architectural Institute of Japan, ed.
,
Architectural Institute of Japan
,
Tokyo
.
36.
Rosenthal
,
D.
, 1941, “
Mathematical Theory of Heat Distribution During Welding and Cutting
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
20
, pp.
220s
234s
.
37.
Goldak
,
J.
,
Chakravarti
,
A.
, and
Bibby
,
M.
, 1984, “
A New Finite Element Model for Welding Heat Sources
,”
Metall. Trans. B
0360-2141,
15B
, pp.
299
305
.
38.
Goldak
,
J.
,
Bibby
,
M.
,
Moore
,
J.
,
House
,
R.
, and
Patel
,
B.
, 1986, “
Computer Modeling of Heat Flow in Welds
,”
Metall. Trans. B
0360-2141,
17B
, pp.
587
600
.
39.
Nguyen
,
N. T.
,
Ohta
,
A.
,
Matsuoka
,
K.
,
Suzuki
,
N.
, and
Maeda
,
Y.
, 1999, “
Analytical Solutions for Transient Temperature of Semi-Infinite Body Subjected to 3-D Moving Heat Sources
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
78
, pp.
265s
274s
.
40.
Blondeau
,
R.
,
Maynier
,
Ph.
, and
Dollet
,
J.
, 1973, “
Forecasting the Hardness and Resistance of Carbon and Low-Alloy Steels According to Their Structure and Composition
,”
Mem. Sci. Rev. Metall.
0025-9128,
70
(
12
), pp.
883
892
.
41.
Blondeau
,
R.
,
Maynier
,
Ph.
,
Dollet
,
J.
, and
Vieillard-Baron
,
B.
, 1975, “
Forecasting the Hardness, Resistance and Breaking Point of Carbon and Low-alloy Steels According to Their Composition and Heat Treatment
,”
Mem. Sci. Rev. Metall.
0025-9128,
72
(
11
), pp.
759
769
.
42.
Mochizuki
,
M.
,
Enomoto
,
K.
,
Okamoto
,
N.
,
Saito
,
H.
, and
Hayashi
,
E.
, 1993, “
Welding Residual Stresses at the Intersection of a Small Diameter Pipe Penetrating a Thick Plate
,”
Nucl. Eng. Des.
0029-5493,
144
(
3
), pp.
439
447
.
43.
Mochizuki
,
M.
,
Hayashi
,
M.
, and
Hattori
,
T.
, 1999, “
Comparison of Five Evaluation Methods of Residual Stress in a Welded Pipe Joint
,”
JSME Int. J., Ser. A
1340-8046,
42
(
1
), pp.
104
110
.
44.
Mochizuki
,
M.
, and
Toyoda
,
M.
, 2002, “
Numerical Simulation of Temperature and Microstructure in X-80 Girth Welded Pipelines
,”
Application and Evaluation of High-Grade Linepipes in Hostile Environments
,
R.
Denys
, and
M.
Toyoda
, eds.,
Scientific Surveys Ltd.
,
London
, pp.
841
863
.
45.
Karkhin
,
V. A.
,
Kreutz
,
W.
,
Pavlova
,
N. O.
, and
Schulz
,
W.
, 2001, “
Effect of Low-Temperature Phase Transformations on Residual Stress Distributions in Laser Welded Joints
,”
Mathematical Modelling of Weld Phenomena 5
,
H.
Cerjak
, ed.,
IOM Communications
,
London
, pp.
597
614
.
46.
Vincent
,
Y.
,
Petit-Grostabussiat
,
S.
, and
Jullien
,
J. F.
, 2002, “
Thermal, Metallurgical and Mechanical Simulations and Experimental Validation of the Residual Stresses in the Heat-Affected Zone
,”
Mathematical Modelling of Weld Phenomena 6
,
H.
Cerjak
, ed.,
Maney
,
London
, pp.
591
627
.
47.
Mochizuki
,
M.
,
Hayashi
,
M.
,
Nakagawa
,
M.
,
Tada
,
N.
, and
Shimizu
,
S.
, 1997, “
A Simplified Analysis of Residual Stress at Welded Joints Between Plate and Penetrating Pipe
,”
JSME Int. J., Ser. A
1340-8046,
40
(
1
), pp.
8
14
.
48.
Mochizuki
,
M.
,
Hayashi
,
M.
, and
Hattori
,
T.
, 1999, “
Residual Stress Analysis by Simplified Inherent Strain at Welded Pipe Junctures in a Pressure Vessel
,”
ASME J. Eng. Mater. Technol.
0094-4289,
121
(
4
), pp.
353
357
.
49.
Mochizuki
,
M.
,
Hayashi
,
M.
, and
Hattori
,
T.
, 2000, “
Numerical Analysis of Welding Residual Stress and its Verification Using Neutron Diffraction Measurement
,”
ASME J. Eng. Mater. Technol.
0094-4289,
122
(
1
), pp.
98
103
.
You do not currently have access to this content.