High power beam welds, such as electron beam welds or laser welds, sometimes provide fracture path deviation (FPD) in standardized Charpy V-notch fracture toughness testing due to narrow bead profile together with higher overmatching in strength between weld metal and base metal. Moreover, it should be noted that these typical features of beam welds might result in a plastic constraint loss around both the notch and crack tip in fracture toughness test specimens. Even in the temperature range where FPD would not occur, the fracture toughness test results could not necessarily be an intrinsic value of such beam welds. These fracture properties make it difficult to evaluate fracture performance of girth welded pipe joints. In this paper, the estimation method of intrinsic fracture toughness of beam weld metal itself using standard toughness test specimens is proposed on the basis of “Weibull stress criterion.” The predicted intrinsic fracture toughness was found to be lower than the test results both in standard Charpy specimen and in three-point bend specimen with fatigue precrack. The assessment of brittle fracture performance of girth welded pipeline was conducted from the estimated intrinsic fracture toughness of girth welds by means of Weibull stress criterion. It was demonstrated that the low intrinsic fracture toughness of beam welds could not directly lead to the low fracture performance of a pipe joint under tensile loading. This is because of a lower plastic constraint compared to a three-point bend specimen due to difference in loading mode together with constraint loss in pipe joints and shielding effect of straining in weld metal due to highly overmatched narrow welds.

1.
Arata
,
Y.
,
Matsuda
,
F.
,
Shibata
,
Y.
,
Ono
,
Y.
,
Tamaoki
,
M.
, and
Fujihira
,
S.
, 1975, “
Mechanical Properties on Electron Beam Welds of Structural High Strength Steels
,”
J. Jpn. Weld. Soc.
,
44
(
12
), pp.
1011
1017
(in Japanese).
2.
Arata
,
Y.
,
Matsuda
,
F.
,
Shibata
,
Y.
,
Ono
,
Y.
,
Tamaoki
,
M.
, and
Fujihira
,
S.
, 1979, “
Mechanical Properties on Electron Beam Welds of Structural High Strength Steels
,”
J. Jpn. Weld. Soc.
,
48
(
5
), pp.
291
297
;
Arata
,
Y.
,
Matsuda
,
F.
,
Shibata
,
Y.
,
Ono
,
Y.
,
Tamaoki
,
M.
, and
Fujihira
,
S.
, 1979,
J. Jpn. Weld. Soc.
,
48
(
8
), pp.
598
605
;
Arata
,
Y.
,
Matsuda
,
F.
,
Shibata
,
Y.
,
Ono
,
Y.
,
Tamaoki
,
M.
, and
Fujihira
,
S.
, 1979,
J. Jpn. Weld. Soc.
,
48
(
9
), pp.
683
689
;
Arata
,
Y.
,
Matsuda
,
F.
,
Shibata
,
Y.
,
Ono
,
Y.
,
Tamaoki
,
M.
, and
Fujihira
,
S.
, 1979,
J. Jpn. Weld. Soc.
,
48
(
10
) pp.
799
807
(in Japanese).
3.
Goldak
,
J. A.
, and
Nguyen
,
D. S.
, 1977, “
A Fundamental Difficulty in Charpy V-Notch Testing Narrow Zones in Welds
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
56
(
4
), pp.
119
125
.
4.
Satoh
,
K.
,
Toyoda
,
M.
,
Nohara
,
N.
,
Takeda
,
S.
, and
Nayama
,
M.
, 1982, “
Notch Toughness Evaluation of HT80 Electron Beam Weld Metal by Charpy Test
,”
J. Jpn. Weld. Soc.
,
51
(
8
), pp.
679
686
(in Japanese).
5.
Borggreen
,
K.
, and
Kristensen
,
J. K.
, 1997, “
An Improved Impact Test Method for Laser Welds in Steels
,”
Mis-Matching of Interfaces and Welds
,
GKSS Research Center
,
Geesthacht
, pp.
411
419
.
6.
Koçak
,
M.
,
Kim
,
Y.-J.
,
Çam
,
G.
,
Santos
,
J.
,
Riekehr
,
S.
,
Torster
,
F.
,
Insfran
,
A.
,
Cardinal
,
N.
,
Webster
,
S.
,
Kristensen
,
J.
, and
Borggren
,
K.
, 1999, “
Recommendation on Tensile and Fracture Toughness Testing Procedure for Power Beam Welds
,” IIW Report No. SC XF-089–99.
7.
Smith
,
E.
, and
Patchett
,
B. M.
, 1975, “
Effect of Notch Acuity and Side Grooving on Fracture Toughness
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
54
(
6
), pp.
169s
177s
.
8.
Nagel
,
M.
,
Langenberg
,
P
,
Lüder
,
F.
,
Bleck
,
W.
, and
Dilthey
,
U.
, 2002, “
Discussion of Testing Procedure for the Determination of the Toughness Properties of Laser Welded Joints
,”
From Charpy to Present Impact
,
Elsevier Science
,
New York
, pp.
253
261
.
9.
Ashida
,
E.
,
Kitamura
,
I.
, and
Matsuda
,
F.
, 2003, “
Study on Toughness Tests of Narrow Zones in Weld (1)
,”
Q. J. Jpn. Weld. Soc.
0288-4771,
72
, pp.
252
253
(in Japanese).
10.
Kristensen
,
J. K.
, and
Borggreen
,
K.
, 1996, “
Evaluation of Laser Welds in Structural Steels
,”
Int. J. Joining Mater.
,
8
(
2
), pp.
48
54
.
11.
Otani
,
T.
,
Tsukamoto
,
S.
,
Arakane
,
G.
,
Kawaguchi
,
Y.
, and
Ohmori
,
A.
, 2003, “
Mechanical Characteristics of High Power CO2 Laser Welding Joints of Ultra-fine Grained High Strength Steel
,”
Q. J. Jpn. Weld. Soc.
0288-4771,
21
(
3
), pp.
425
432
.
12.
Beremin
,
F. M.
, 1983, “
A Local Criterion for Cleavage Fracture of a Nuclear Pressure Vessel Steel
,”
Metall. Trans. A
0360-2133,
14A
, pp.
2277
2287
.
13.
Mudry
,
F.
, 1987, “
A Local Approach to Cleavage Fracture
,”
Nucl. Eng. Des.
0029-5493,
105
, pp.
65
73
.
14.
An
,
G.-B.
,
Ohata
,
M.
, and
Toyoda
,
M.
, 2003, “
Effect of Strength Mismatch and Dynamic Loading on Ductile Fracture Initiation
,”
Eng. Fract. Mech.
0013-7944,
70
(
11
), pp.
1359
1470
.
15.
WES 2808, 2003, “
Method of Assessing Brittle Fracture in Steel Weldments Subjected to Large Cyclic and Dynamic Strain
,” The Japan Welding Engineering Society.
16.
Koçak
,
M.
,
Santos
,
J.
,
Insfran
,
A.
,
Riekehr
,
S.
,
Cardinal
,
N.
,
Borggreen
,
K.
, and
Kristensen
,
J.
, 1998, “
Laser Beam Weldability and Fracture Toughness Testing of Structural Steels
,”
Proceedings of the Sixth International Conference on Welding and Melting by Electron and Laser Beams, CISFFEL 6
, pp.
265
272
.
17.
Koçak
,
M.
,
Çam
,
G.
,
Kim
,
Y.-J.
, and
Dos Santos
,
J. F.
, 1998, “
Mechanical and Fracture Properties of Laser Beam Welded Joints
,” IIW Doc. XV-996–98.
18.
Zerbst
,
U.
,
Koçak
,
M.
, and
Hübner
,
P.
, 2002,
Bruchmechanische Bewertung von Schweißverbindungen
,
GKSS
,
Geesthacht
.
19.
Minami
,
F.
,
Brückner-Foit
,
A.
,
Munz
,
D.
, and
Trolldenier
,
B.
, 1992, “
Estimation Procedure for the Weibull Parameter Used in the Local Approach
,”
Int. J. Fract.
0376-9429,
54
, pp.
197
210
.
20.
Minami
,
F.
,
Ohata
,
M.
,
Toyoda
,
M.
,
Tanaka
,
T.
,
Arimochi
,
K.
,
Glover
,
A. G.
, and
North
,
T. H.
, 1995, “
The Effect of Weld Metal Yield Strength on the Fracture Behavior of Girth Welds in Grade 550 Pipe
,”
Pipeline Technology
,
Elsevier
,
New York
, Vol.
1
, pp.
441
461
.
21.
Ohata
,
M.
,
Minami
,
F.
, and
Toyoda
,
M.
, 1996, “
Local Approach to Mis-match Effect on Cleavage Fracture of Notched Material
,”
J. Phys. IV
1155-4339,
6
, pp.
C6/269
C6/278
.
22.
Ohata
,
M.
, and
Toyoda
,
M.
, 1998, “
Fracture Performance Evaluation of Strength Mis-Matched Welds with Surface Notch
,” IIW Doc. X-1421–98.
23.
Minami
,
F.
,
Katou
,
T.
,
Nakamura
,
T.
, and
Arimochi
,
K.
, 1999, “
Equivalent CTOD Concept for Fracture Toughness Requirement of Materials for Steel Structures
,”
Proceedings of the 18th International Conference on Offshore Mechanics and Arctic Engineering
, OMAE99/MAT-2130.
24.
Gao
,
X.
,
Ruggieri
,
C.
, and
Dodds
,
R.H.
, Jr.
, 1998, “
Calibration of Weibull Stress Parameters Using Fracture Toughness Data
,”
Int. J. Fract.
0376-9429,
92
, pp.
175
200
.
25.
Gao
,
X.
, and
Dodds
,
R. H.
, Jr.
, 2000, “
Constraint Effects on the Ductile-to-Brittle Transition Temperature of Ferritic Steels: A Weibull Stress Model
,”
Int. J. Fract.
0376-9429,
102
, pp.
43
69
.
26.
Rossoll
,
A.
,
Berdin
,
C.
, and
Prioul
,
C.
, 2002, “
Determination of the Fracture Toughness of a Low Alloy Steel by the Instrumented Charpy Impact Test
,”
Int. J. Fract.
0376-9429,
115
, pp.
205
226
.
27.
Tanguy
,
B.
,
Besson
,
J.
,
Piques
,
R.
, and
Pineau
,
A.
, 2004, “
Ductile to Brittle Transition of an A508 Steel Characterized by Charpy Impact Test, Part II: Modeling of the Charpy Transition Curve
,”
Eng. Fract. Mech.
0013-7944,
72
, pp.
413
434
.
28.
Toyoda
,
M.
,
Ohata
,
M.
,
Ohwaki
,
G.
,
Ueda
,
Y.
, and
Takeuchi
,
I.
, 2000, “
Ductile Fracture Initiation Behavior of Pipe under a Large Scale of Cyclic Bending
,”
Pipeline Technology
,
Elsevier
,
New York
, Vol.
II
, pp.
87
102
.
29.
Ohata
,
M.
,
Toyoda
,
M.
, and
An
,
G.-B.
, 2004, “
Effect of Strength Mismatch on Ductile Crack Initiation Behavior From Notch Root
,”
Weld. World
0043-2288, Vol.
48
(
11/12
), pp.
9
13
.
30.
Ohata
,
M.
, and
Toyoda
,
M.
, 2004, “
Damage Concept for Evaluating Ductile Cracking of Steel Structure Subjected to Large-Scale Cyclic Straining
,”
Sci. Technol. Adv. Mater.
1468-6996, Vol.
5
, pp.
241
249
.
You do not currently have access to this content.