Long-term creep rupture life is usually evaluated from short-term data by a time-temperature parameter (TTP) method. The allowable stress of Gr.122 steel listed in the ASME code has been evaluated by this method and is recognized to be overestimated. The objective of the present study is to understand the causes of the overestimation and propose appropriate methodology for avoiding the overestimation. The apparent activation energy Q for rupture life of the steel changes from a high value of short-term creep to a low value of long-term creep. However, the decrease in Q is ignored in the conventional TTP analyses, resulting in the overestimation of rupture life. A multiregion analysis of creep rupture data is employed to avoid the overestimation; in the analysis creep rupture data are divided into a couple of regions so that the Q value is unique in each divided region. The multiregion analysis provides a good fit to the data and the lowest value of 105h creep rupture strength among the three ways of data analysis examined. A half of 0.2% proof stress cannot provide an appropriate boundary for dividing data to be used in the multiregion analysis. In the 2001 edition of the ASME code an F average concept has been proposed as a substitution for the safety factor of 23 for average rupture stress. The allowable stress of Gr.122 steel changes significantly depending on the allowable stress criteria as well as the methods of rupture data analysis: i.e., from 74MPato48MPa.

1.
Larson
,
F. R.
, and
Miller
,
J.
, 1952, “
A Time-Temperature Relationship for Rupture and Creep Stress
,”
Trans. ASME
0097-6822,
74
, pp.
765
775
.
2.
Orr
,
R. L.
,
Sherby
,
O. D.
, and
Dorn
,
J. E.
, 1954, “
Correlation of Rupture Data for Metals at Elevated Temperatures
,”
Trans. Am. Soc. Met.
0096-7416,
46
, pp.
113
128
.
3.
Sawada
,
K.
,
Takeda
,
M.
,
Maruyama
,
K.
,
Ishii
,
R.
, and
Yamada
,
M.
, 1998, “
Dislocation Substructure Degradation During Creep of Martensitic Heat-Resisting Steels With and without W
,”
Proc. Materials for Advanced Power Engineering
, 1998,
J.
Lecomte-Beckers
,
F.
Schubert
, and
P. J.
Ennis
, eds.,
Forshungszentrum Julich GmbH
,
Julich, Germany
, pp.
575
583
.
4.
Kushima
,
H.
,
Kimura
,
K.
, and
Abe
,
F.
, 1999, “
Degradation of Mod.9Cr-1Mo Steel during Long-Term Creep Deformation
,”
Tetsu to Hagane
0021-1575,
85
, pp.
841
847
.
5.
Sato
,
M.
,
Takeda
,
M.
,
Koike
,
J.
, and
Maruyama
,
K.
, 2001, “
Drop in Rupture Strength after Long-Term Creep Tests of Ferritic Steel With Tempered Martensitic Lath Structure
,”
CAMP-ISIJ
,
14
, pp.
513
516
.
6.
Maruyama
,
K.
,
Sawada
,
K.
, and
Koike
,
J.
, 2001, “
Strengthening Mechanism of Creep Resistant Tempered Martensitic Steel
,”
ISIJ Int.
0915-1559,
41
, pp.
641
653
.
7.
Maruyama
,
K.
,
Baba
,
E.
,
Yokokawa
,
K.
,
Kushima
,
H.
, and
Yagi
,
K.
, 1994, “
Errors of Creep Rupture Life Extrapolated by Time-Temperature Parameter Methods
,”
Tetsu to Hagane
0021-1575,
80
, pp.
336
341
.
8.
Kimura
,
K.
,
Sawada
,
K.
,
Kubo
,
K.
, and
Kushima
,
H.
, 2004, “
Influence of Stress on Degradation and Life Prediction on High Strength Ferritic Steels
,”
Experience with Creep-strength Enhanced Ferritic Steels and New and Emerging Computational Methods
,
ASME PVP
, Vol.
476
, pp.
11
18
.
9.
Masuyama
,
F.
, 2005, “
Creep Rupture Life and Design Factors for High Strength Ferritic Steels
,”
Creep & Fracture in High Temperature Components—Design & Life Assessment Issues
,
I. A.
Shibli
,
S. R.
Holdsworth
, and
G.
Merckling
, eds,
DEStech Publications
,
Lancaster, PA
, pp.
983
996
.
10.
Ashby
,
M. F.
,
Gandihi
,
C.
, and
Taplin
,
D. M. R.
, 1979, “
Fracture Mechanism Maps and their Construction for F.C.C Metals and Alloys
,”
Acta Metall.
0001-6160,
27
, pp.
699
729
.
11.
Nakakuki
,
H.
,
Maruyama
,
K.
,
Oikawa
,
H.
, and
Yagi
,
K.
, 1995, “
Collective Evaluation of Temperature and Stress Dependence of Creep Rupture Life in Austenitic Stainless Steels
,”
Tetsu to Hagane
0021-1575,
81
, pp.
220
224
.
12.
Kimura
,
K.
, 2005, “
Activity Report of WG1
,” Survey Report on Rational Determination of Safety Margin and Allowable Stress, Iron Steel Inst. Jpn., Tokyo, Japan, pp.
74
86
.
13.
Masuyama
,
F.
, 1995, “
ASME Code Approval for NF616 and HCM12A
,”
New Steels for Advanced Plant up to 620°C
,
E.
Metcalfe
, ed.,
EPRI
,
Palo Alto, CA
, pp.
98
108
.
14.
Frost
,
H. J.
, and
Ashby
,
M. F.
, 1982,
Deformation Mechanism Maps
,
Pergamon
,
Oxford, UK
.
15.
Maruyama
,
K.
,
Sawada
,
K.
,
Koike
,
J.
,
Sato
,
H.
, and
Yagi
,
K.
, 1997, “
Examination of deformation Mechanism Maps in 2.25Cr–1Mo Steel by Creep Tests at Strain Rates of 10−11s−1to10−6s−1
,”
Mater. Sci. Eng., A
0921-5093,
224
, pp.
166
172
.
16.
Maruyama
,
K.
, and
Lee
,
J. S.
, 2005, “
Causes of Overestimation of Creep Rupture Strength in 11Cr-2W-0.3Mo-CuVNb Steel
,”
Creep & Fracture in High Temperature Components—Design & Life Assessment Issues
,
I. A.
Shibli
,
S. R.
Holdsworth
, and
G.
Merckling
, eds.,
DEStech Publications
,
Lancaster, PA
, pp.
372
379
.
You do not currently have access to this content.