Cracks and flaws occur in mechanical components and structures, and can lead to catastrophic failures. Therefore, integrity assessment of components with defects is carried out. This paper describes the Elastic Modulus Adjustment Procedures (EMAP) employed herein to determine the limit load of components with cracks or crack-like flaw. On the basis of linear elastic Finite Element Analysis (FEA), by specifying spatial variations in the elastic modulus, numerous sets of statically admissible and kinematically admissible distributions can be generated, to obtain lower and upper bounds limit loads. Due to the expected local plastic collapse, the reference volume concept is applied to identify the kinematically active and dead zones in the component. The Reference Volume Method is shown to yield a more accurate prediction of local limit loads. The limit load values are then compared with results obtained from inelastic FEA. The procedures are applied to a practical component with crack in order to verify their effectiveness in analyzing crack geometries. The analysis is then directed to geometries containing multiple cracks and three-dimensional defect in pressurized components.

1.
Jones
,
G. L.
, and
Dhalla
,
A. K.
, 1981, “
Classification of Clamp Induced Stresses in Thin Walled Pipe
,”
PVP (Am. Soc. Mech. Eng.)
0277-027X,
81
, pp.
17
23
.
2.
Marriott
,
D. L.
, 1988, “
Evaluation of Deformation or Load Control of Stress Under Inelastic Conditions Using Elastic Finite Element Stress Analysis
,”
PVP (Am. Soc. Mech. Eng.)
0277-027X,
136
, pp.
3
9
.
3.
Seshadri
,
R.
, and
Fernando
,
C. P. D.
, 1992, “
Limit Loads of Mechanical Components and Structures Using the GLOSS R-Node Method
,”
ASME J. Pressure Vessel Technol.
0094-9930,
114
, pp.
201
208
.
4.
Mackenzie
,
D.
, and
Boyle
,
J. T.
, 1993, “
A Method of Estimating Limit Loads Using Elastic Analysis, I: Simple Examples
,”
Int. J. Pressure Vessels Piping
0308-0161,
53
, pp.
77
85
.
5.
Seshadri
,
R.
, 1991, “
The Generalized Local Stress Strain (GLOSS) Analysis: Theory and Applications
,”
ASME J. Pressure Vessel Technol.
0094-9930,
113
, pp.
219
227
.
6.
Ponter
,
A. R. S.
,
Fuschi
,
P.
, and
Engelhardt
,
M.
, 2000, “
Limit Analysis for a General Class of Yield Conditions
,”
Eur. J. Mech. A/Solids
0997-7538,
19
, pp.
401
421
.
7.
Ponter
,
A. R. S.
, and
Engelhardt
,
M.
, 2000, “
Shakedown Limit for General Yield Condition
,”
Eur. J. Mech. A/Solids
0997-7538,
19
, pp.
423
445
.
8.
Mendleson
,
A.
, 1968,
Plasticity: Theory and Application
,
Macmillan
, New York.
9.
Webster
,
G. A.
, and
Ainsworth
,
R. A.
, 1994,
High Temperature Component Life Assessment
,
Chapman and Hall
, London, UK.
10.
R6, 2001, “
Assessment of Integrity of Structures Containing Defects
,” Revision 4, British Energy.
11.
Calladine
,
C. R.
, 1969,
Engineering Plasticity
,
Pergamon
, Oxford, UK.
12.
Mura
,
T.
,
Rimawi
,
W. H.
, and
Lee
,
S. L.
, 1965, “
Extended Theorems of Limit Load Analysis
,”
Q. Appl. Math.
0033-569X,
23
, pp.
171
179
.
13.
Seshadri
,
R.
, and
Mangalaramanan
,
S. P.
, 1997, “
Lower Bound Limit Loads Using Variational Concepts: The mα -Method
,”
Int. J. Pressure Vessels Piping
0308-0161,
71
, pp.
93
106
.
14.
Pan
,
L.
, and
Seshadri
,
R.
, 2002, “
Limit Load Estimation Using Plastic Flow Parameter in Repeated Elastic Finite Element Analyses
,”
ASME J. Pressure Vessel Technol.
0094-9930,
124
, pp.
433
439
.
15.
Seshadri
,
R.
, and
Indermohan
,
H.
, 2004, “
Lower Bound Limit Load Determination: The mβ-Multiplier Method
,”
ASME J. Pressure Vessel Technol.
0094-9930,
126
, pp.
237
240
.
16.
Adibi-Asl
,
R.
,
Fanous
,
I. F. Z.
, and
Seshadri
,
R.
, 2006, “
Elastic Modulus Adjustment Procedures—Improved Convergence Schemes
,”
Int. J. Pressure Vessels Piping
0308-0161,
83
, pp.
154
160
.
17.
Calladine
,
C. R.
, and
Drucker
,
D. C.
, 1962, “
Nesting Surfaces for Constant Rate of Energy Dissipation in Creep
,”
Q. Appl. Math.
0033-569X,
20
, pp.
79
84
.
18.
ANSYS, 2002, Ver. 7.1 Online User Guide, SAS IP Inc., Houston, PA.
You do not currently have access to this content.