Several upper-bound limit-load multipliers based on elastic modulus adjustment procedures converge to the lowest upper-bound value after several linear elastic iterations. However, pressure component design requires the use of lower-bound multipliers. Local limit loads are obtained in this paper by invoking the concept of “reference volume” in conjunction with the mβ multiplier method. The lower-bound limit loads obtained compare well to inelastic finite element analysis results for several pressure component configurations.

1.
Jones
,
G. L.
, and
Dhalla
,
A. K.
, 1981, “
Classification of Clamp Induced Stresses in Thin Walled Pipe
,”
PVP (Am. Soc. Mech. Eng.)
0277-027X,
81
, pp.
17
23
.
2.
Marriott
,
D. L.
, 1988, “
Evaluation of Deformation or Load Control of Stress under Inelastic Conditions Using Elastic Finite Element Stress Analysis
,”
PVP (Am. Soc. Mech. Eng.)
0277-027X,
136
, pp.
3
9
.
3.
Seshadri
,
R.
, and
Fernando
,
C. P. D.
, 1992, “
Limit Loads of Mechanical Components and Structures Using the GLOSS R-Node Method
,”
ASME J. Pressure Vessel Technol.
0094-9930,
114
, pp.
201
208
.
4.
Mackenzie
,
D.
, and
Boyle
,
J. T.
, 1993, “
A Method of Estimating Limit Loads Using Elastic Analysis, I: Simple Examples
,”
Int. J. Pressure Vessels Piping
0308-0161,
53
, pp.
77
85
.
5.
Seshadri
,
R.
, 1991, “
The Generalized Local Stress Strain (GLOSS) Analysis—Theory and Applications
,”
ASME J. Pressure Vessel Technol.
0094-9930,
113
, pp.
219
227
.
6.
Ponter
,
A. R. S.
,
Fuschi
,
P.
, and
Engelhardt
,
M.
, 2000, “
Limit Analysis for a General Class of Yield Conditions
,”
Eur. J. Mech. A/Solids
0997-7538,
19
, pp.
401
421
.
7.
Ponter
,
A. R. S.
, and
Engelhardt
,
M.
, 2000, “
Shakedown Limit for a General Yield Condition
,”
Eur. J. Mech. A/Solids
0997-7538,
19
, pp.
423
445
.
8.
Seshadri
,
R.
, and
Indermohan
,
H.
, 2004, “
Lower Bound Limit Load Determination: The mβ-Multiplier Method
,”
ASME J. Pressure Vessel Technol.
0094-9930,
126
, pp.
237
240
.
9.
Seshadri
,
R.
, and
Mangalaramanan
,
S. P.
, 1997, “
Lower Bound Limit Load Using Variational Concepts: The mα-Method
,”
Int. J. Pressure Vessels Piping
0308-0161,
71
, pp.
93
106
.
10.
Adibi-Asl
,
R.
,
Fanous
,
I. F. Z.
, and
Seshadri
,
R.
, 2006, “
Elastic Modulus Adjustment Procedures—Improved Convergence Schemes
,”
Int. J. Pressure Vessels Piping
0308-0161,
83
, pp.
154
160
.
11.
Calladine
,
C. R.
, and
Drucker
,
D. C.
, 1962, “
Nesting Surfaces for Constant Rate of Energy Dissipation in Creep
,”
Q. Appl. Math.
0033-569X,
20
, pp.
79
84
.
12.
Calladine
,
C. R.
, 1969,
Engineering Plasticity
,
Pergamon Press
,
London
.
13.
Mura
,
T.
,
Rimawi
,
W. H.
, and
Lee
,
S. L.
, 1965, “
Extended Theorems of Limit Analysis
,”
Q. Appl. Math.
0033-569X,
23
, pp.
171
179
.
14.
Pan
,
L.
, and
Seshadri
,
R.
, 2002, “
Limit Load Estimation Using Plastic Flow Parameter in Repeated Elastic Finite Element Analyses
,”
ASME J. Pressure Vessel Technol.
0094-9930,
124
, pp.
433
439
.
15.
Reinhardt
,
W. D.
, and
Seshadri
,
R.
, 2003, “
Limit Load Bounds for the mα Multipliers
,”
ASME J. Pressure Vessel Technol.
0094-9930,
125
, pp.
11
18
.
You do not currently have access to this content.