Numerical simulation of fatigue crack propagation based on fracture mechanics and the conventional finite element method requires a huge amount of computational resources when the cracked structure shows a complicated condition such as the multiple site damage or thermal fatigue. The objective of the present study is to develop a simulation technique for fatigue crack propagation that can be applied to complex situations by employing the continuum damage mechanics (CDM). An anisotropic damage tensor is defined to model a macroscopic fatigue crack. The validity of the present theory is examined by comparing the elastic stress distributions around the crack tip with those obtained by a conventional method. Combined with a nonlinear elasto-plastic constitutive equation, numerical simulations are conducted for low cycle fatigue crack propagation in a plate with one or two cracks. The results show good agreement with the experiments. Finally, propagations of multiply distributed cracks under low cycle fatigue loading are simulated to demonstrate the potential application of the present method.

1.
Dawicke
,
D. S.
, and
Newman
, Jr.,
J. C.
, 1992, “
Analysis and Prediction of Multiple-Site Damage (MSD) Fatigue Crack Growth
,” NASA TP-3231.
2.
DeLong
,
J. F.
,
Ishimoto
,
R.
,
Kajigaya
,
I.
,
Nakashiro
,
M.
,
Yoshikawa
,
K.
,
Tokimasa
,
K.
,
Watanabe
,
O.
,
Ohtomo
,
A.
, and
Honda
,
T.
, 1984, “
Failure Analysis and Metallurgical Evaluation of Turbine Stop and Control Valves Used at Super High Temperature and Pressure Plant
,”
Therm. Nucl. Power
,
35
(
11
), pp.
1249
1269
.
3.
Chaboche
,
J. L.
, 1988, “
Continuum Damage Mechanics: Part I—General Concepts
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
55
, pp.
59
64
.
4.
Chaboche
,
J. L.
, 1988, “
Continuum Damage Mechanics: Part II—Damage Growth, Crack Initiation, and Crack Growth
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
55
, pp.
65
72
.
5.
Lemaitre
,
J.
, 1986, “
Local Approach of Fracture
,”
Eng. Fract. Mech.
0013-7944,
25
(
5/6
), pp.
523
537
.
6.
Lemaitre
,
J.
, 1990,
A Course on Damage Mechanics
Springer
,
New York
.
7.
Hayhurst
,
D. R.
,
Dimmer
,
P. R.
, and
Chernuka
,
M. W.
, 1975, “
Estimates of the Creep Rupture Lifetime of Structures Using the Finite Element Method
,”
J. Mech. Phys. Solids
0022-5096,
23
, pp.
335
355
.
8.
Hyde
,
T. H.
,
Yaghi
,
A.
,
Becker
,
A. A.
, and
Earl
,
P. G.
, 2001, “
Finite Element Creep Continuum Damage Mechanics Analysis of Pressurized Pipe Bends with Ovality
,”
Proc. 7th International Conference on Creep and Fatigue at Elevated Temperatures
, pp.
507
511
.
9.
Chow
,
C. L.
, and
Wang
,
J.
, 1987, “
An Anisotropic Theory of Elasticity for Continuum Damage Mechanics
,”
Int. J. Fatigue
0142-1123,
33
, pp.
3
16
.
10.
Chow
,
C. L.
, and
Wang
,
J.
, 1987, “
An Anisotropic Theory of Continuum Damage Mechanics for Ductile Fracture
,”
Eng. Fract. Mech.
0013-7944,
27
(
5
), pp.
547
558
.
11.
Chow
,
C. L.
, and
Wang
,
J.
, 1988, “
A Finite Element Analysis of Continuum Damage Mechanics for Ductile Fracture
,”
Int. J. Fatigue
0142-1123,
38
, pp.
83
102
.
12.
Cordebois
,
J. P.
, and
Sidoroff
,
F.
, 1983, “
Damage Induced Elastic Anisotropy
,” in
Colloques Internationaux du CNRS No 295 Comportement Me’canique des Solides Anisotropes
,
J. P.
Boehler
, ed.,
Martinus Nijhoff
,
Boston
, pp.
761
774
.
13.
Lennon
,
A. B.
, and
Prendergast
,
P. J.
, 2004, “
Modelling Damage Growth and Failure in Elastic Materials With Random Defect Distributions
,”
Proc. R. Ir. Acad. A, Math. Phys. Sci.
0035-8975,
104A
(
2
), pp.
155
171
.
14.
Sidoroff
,
F.
, 1981, “
Description of Anisotropic Damage Application to Elasticity
,” in IUTAM Colloquium,
Physical Nonlinearities in Structural Analysis
,
J.
Hult
and
J.
Lemaitre
, eds.,
Springer-Verlag
,
Berlin
, pp.
237
244
.
15.
Truesdell
,
C.
, and
Noll
,
W.
, 1992,
The Non-Linear Field Theories of Mechanics
,
2nd ed.
,
Springer-Verlag
,
New York
, Sec. 7.
16.
Leigh
,
D. C.
, 1968,
Nonlinear Continuum Mechanics
,
McGraw-Hill
,
New York
, Sec. 4.3.
17.
CRC Corp.
, 1995,
FINAS (Finite Element Nonlinear Structural Analysis System) Reference Manual
, CRC Solutions Corp., Tokyo, Japan.
18.
Armstrong
,
P. J.
, and
Frederick
,
C. O.
, 1966, “
A Mathematical Representation of Multiaxial Bauschinger Effect
,” GEGB Report RD/B/N731.
19.
Chaboche
,
J. L.
,
Dang-Van
,
K.
, and
Cordier
,
G.
, 1979, “
Modelization of the Strain Memory Effect on the Cyclic Hardening of 31 Stainless Steel
,” Transactions of 5th International Conference on Structural Mechanics in Reactor Technology (SMiRT), Vol.-
L
, Berlin, FRG.
20.
Takagaki
,
M.
, 2000, “
Simulation of Multiply Distributed Cracks Propagation Using Anisotropic Damage Theory
,” Ph.D. dissertation, The University of Tokyo (in Japanese).
21.
Jiang
,
Y.
, and
Feng
,
M.
, 2004, “
Modeling of Fatigue Crack Propagation
,”
ASME J. Eng. Mater. Technol.
0094-4289,
126
, pp.
77
86
.
22.
Lemaitre
,
J.
, 1985, “
Coupled Elasto-Plastic and Damage Constitutive Equations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
51
, pp.
31
49
.
23.
Ohno
,
N.
, 1990, “
Recent Topics in Constitutive Modeling of Cyclic Plasticity and Viscoplasticity
,”
Appl. Mech. Rev.
0003-6900,
43
(
11
), pp.
283
295
.
24.
Muraki
,
K.
, and
Asada
,
Y.
, 1991, “
Continuum Plasticity Approach for Multiply Distributed Flaws
,” Transactions of 11th International Conference on Structural Mechanics in Reactor Technology (SMiRT), Vol.-
L
, Tokyo, Japan, pp.
43
48
.
You do not currently have access to this content.