The present paper deals with the modal analysis of a nuclear reactor with fluid-structure interaction effects. The proposed study aims at describing various fluid-structure interaction effects using several numerical approaches. The modeling lies on a classical finite element discretization of the coupled fluid-structure equation, enabling the description of added mass and added stiffness effects. A specific procedure is developed in order to model the presence of internal structures within the nuclear reactor, based on periodical homogenization techniques. The numerical model of the nuclear pressure vessel is developed in a finite element code in which the homogenization method is implemented. The proposed methodology enables a convenient analysis from the engineering point of view and gives an example of the fluid-structure interaction effects, which are expected on an industrial structure. The modal analysis of the nuclear pressure vessel is then performed and highlights of the relative importance of FSI effects for the industrial case are evaluated: the analysis shows that added mass effects and confinement effects are of paramount importance in comparison to added stiffness effects.

1.
Makerle
,
J.
, 1999, “
Fluid-Structure Interaction Problems, Finite Element Approach and Boundary Elements Approaches. A Bibliography
,”
Finite Elem. Anal. Design
0168-874X,
31
, pp.
231
240
.
2.
Morand
,
H. J.-P.
, and
Ohayon
,
R.
, 1995,
Fluid Structure Interaction
,
Wiley
,
New York
.
3.
Sigrist
,
J. F.
,
Broc
,
D.
, and
Lainé
,
C.
, 2005. “
A Homogenization Method for the Analysis of a Coupled Fluid-Structure Interaction Problem with Inner Solid Structures
,”
European Nuclear Conference
, Versailles.
4.
Axisa
,
F.
, 2001,
Interactions Fluide Structure
,
Hermès
,
London
.
5.
Rajakumar
,
C.
, and
Rogers
,
C. G.
, 1991, “
The Lanczos Algorithm Applied to Unsymmetric Generalized Eigenvalue Problem
,”
Int. J. Numer. Methods Eng.
0029-5981,
32
, pp.
1009
1026
.
6.
Boujot
,
J.
, 1987, “
Mathematical Formulation of Fluid-Structure Interaction Problems
,”
Model. Math. Anal. Numer.
0764-583X,
21
, pp.
239
260
.
7.
Gibert
,
R. J.
, 1986,
Vibrations des structures. Interaction avec les fluides. Sources d’excitation aléatoires
, Collection de la Direction des Etudes et Recherches d’Electricté de France, vol.
69
, Eyrolles.
8.
Sigrist
,
J. F.
,
Broc
,
D.
, and
Lainé
,
C.
, 2005, “
Seismic Analysis of a Nuclear Reactor with Fluid-Structure Interaction
,” Pressure Vessel and Piping, Denver, CO.
9.
Brochard
,
D.
, and
Hammami
,
L.
, 1998, “
Non-Linear Analysis of Nuclear Reactor Cores by an Homogenization Method
,” Pressure Vessel and Piping, San Diego, CA.
10.
Cheval
,
K.
, 2001, “
Modélisation du comportement sismique de structures multitubulaires baignées par un fluide dense
,” Ph.D. Thesis, Université d’Evry.
11.
Planchard
,
J.
, and
Ibnou-Zahir
,
M.
, 1983, “
Natural Frequencies of a Tube Bundle in an Incompressible Fluid
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
41
, pp.
47
68
.
12.
Conca
,
C.
,
Planchard
,
J.
,
Thomas
,
B.
, and
Vanninathan
,
M.
, 1994,
Problèmes mathématiques en couplage fluide∕structure. Applications aux faisceaux tubulaires
, Collection de la Direction des Etudes et Recherches d'Electricité de France, Vol.
85
, Eyrolles.
13.
Broc
,
D.
,
Queval
,
J. C.
, and
Viallet
,
E.
, 2003, “
Seismic Behaviour of PWR Reactor Cores: Fluid-Structure Effects
,”
17th Conference on Structural Mechanic in Reactor Technology
, Prague.
14.
Broc
,
D.
, 2004, “
Seismic Behaviour of PWR Reactor Cores: Whole Core Model with Fluid-Structure Interaction Effects
,”
Flow Induced Vibrations
, Paris, July 6–9, Vol.
1
, pp.
283
288
.
15.
Verpeaux
,
P.
et al.
, 1989, “
A Modern Approach of Computer Codes for Structural Analysis
,”
10th Conference on Structural Mechanics in Reactor Technology
, Anaheim, CA.
16.
Cheng
,
F. Y.
, 2001,
Matrix Analysis of Structural Dynamics
,
Marcel Dekker
,
New York
.
You do not currently have access to this content.