A numerical study of the evaluation of turbulence models for predicting the thermal stratification phenomenon is presented. The tested models are the elliptic blending turbulence model (EBM), the two-layer model, the shear stress transport model (SST), and the elliptic relaxation model (V2-f). These four turbulence models are applied to the prediction of a thermal stratification in an upper plenum of a liquid metal reactor experimented at the Japan Nuclear Cooperation (JNC). The EBM and V2-f models predict properly the steep gradient of the temperature at the interface of the cold and hot regions that is observed in the experimental data, and the EBM and V2-f models have the capability of predicting the temporal oscillation of the temperature. The two-layer and SST models predict the diffusive temperature gradient at the interface of a thermal stratification and fail to predict a temporal oscillation of the temperature. In general, the EBM predicts best the thermal stratification phenomenon in the upper plenum of the liquid metal reactor.

1.
Vidil
,
R.
,
Grand
,
D.
, and
Leroux
,
F.
, 1988, “
Interaction of Recirculation and Stable Stratification in a Rectangular Cavity Filled with Sodium
,”
Nucl. Eng. Des.
0029-5493,
105
, pp.
32l
332
.
2.
Ieda
,
Y.
,
Maekawa
,
I.
,
Muramatsu
,
T.
, and
Nakanish
,
S.
, 1990, “
Experimental and Analytical Studies of the Thermal Stratification Phenomenon in the Outlet Plenum of Fast Breeder Reactors
,”
Nucl. Eng. Des.
0029-5493,
120
, pp.
403
414
.
3.
Tanaka
,
N.
,
Moriya
,
S.
,
Ushijima
,
S.
,
Koga
,
T.
, and
Eguchi
,
Y.
, 1990, “
Prediction Method for Thermal Stratification in a Reactor Vessel
,”
Nucl. Eng. Des.
0029-5493,
120
, pp.
395
402
.
4.
Muramatsu
,
T.
, and
Ninokata
,
H.
, 1994, “
Investigation of Turbulence Modelling in Thermal Stratification Analysis
,”
Nucl. Eng. Des.
0029-5493,
150
, pp.
81
93
.
5.
Doi
,
Y.
, and
Muramatsu
,
T.
, 1997, “
Numerical Analysis of Thermal Stratification Phenomena in Upper Plenum of Fast Breeder Reactor
,”
Proc. of 8th Int. Topical Meeting on Nuclear Reactor Thermal Hydraulics
, Kyoto, Japan, pp.
1696
1703
.
6.
Leonard
,
B. P.
, 1979, “
A Stable and Accurate Convective Modelling Procedure Based on Quadratic Interpolation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
19
, pp.
59
98
.
7.
Chapman
,
M.
, 1984, “
FRAM-Nonlinear Damping Algorithms for the Continuity Equation
,”
J. Comput. Phys.
0021-9991,
44
, p.
84
.
8.
Chen
,
H. C.
, and
Patel
,
V. C.
, 1988, “
Near-Wall Turbulence Models for Complex Flows Including Separation
,”
AIAA J.
0001-1452,
26
, pp.
641
648
.
9.
Menter
,
F. R.
, 1994, “
Two Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
0001-1452,
32
, pp.
l598
1604
.
10.
Medic
,
G.
, and
Durbin
,
P. A.
, 2002, “
Toward Improved Prediction of Heat Transfer on Turbine Blades
, ”
ASME J. Turbomach.
0889-504X,
124
, pp.
187
192
.
11.
Manceau
,
R.
, and
Hanjalic
,
K.
, 2002, “
Elliptic Blending Model: A New Near-Wall Reynolds-Stress Turbulence Closure
,”
Phys. Fluids
1070-6631,
14
, pp.
744
754
.
12.
Warming
,
R. F.
, and
Beam
,
R. M.
, 1976, “
Upwind Second Order Difference Schemes and Applications in Aerodynamic Flows
,”
AIAA J.
0001-1452,
14
, pp.
1241
1249
.
13.
Zhu
,
J.
, and
Rodi
,
W.
, 1991, “
A Low Dispersion and Bounded Convection Scheme
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
92
, pp.
225
232
.
14.
Zhu
,
J.
, 1991, “
A Low-Diffusive and Oscillation-Free Convection Scheme
,”
Commun. Appl. Numer. Methods
0748-8025,
11
, pp.
225
232
.
15.
Gaskell
,
P. H.
, and
Lau
,
A. K. C.
, 1988, “
Curvature-Compensated Convective Transport: SMART, A New Boundedness Preserving Transport Algorithm
,”
Int. J. Numer. Methods Fluids
0271-2091,
8
, pp.
617
641
.
16.
Muramatsu
,
T.
, and
Matsumoto
,
M.
, 1988, “
Investigation of Thermal Stratification Phenomena in Reactor Vessels (3)
,” PNC N9410 88-167.
17.
Choi
,
S. K.
,
Nam
,
H. Y.
,
Wi
,
M. H.
,
Kim
,
S. O.
,
Jo
,
J. C.
, and
Choi
,
H. K.
, 2005, “
Evaluation of Turbulence Models for Thermal Striping in a Triple-Jet
,” Proc. of the 2005 ASME-PVP Conference, Paper No. PVP-71512.
18.
Manceau
,
R.
, 2005, “
An Improved Version of the Elliptic Blending Model-Applications to Non-Rotating and Rotating Channel Flow
,”
Proc. 4th Int. Turb. Shear Flow Phenomena
, Williamsburg, Virginia, pp.
77
95
.
19.
Thielen
,
L.
,
Hanjalic
,
K.
,
Jonker
,
H.
, and
Manceau
,
R.
, 2005, “
Predictions of Flow and Heat Transfer in Multiple impinging Jets with an Elliptic Blending Second-Moment Closure
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
1583
1598
.
20.
Launder
,
B. E.
, and
Shima
,
N.
, 1989, “
Second Moment Closure for the Near-Wall Sublayer: Development and Application
,”
AIAA J.
0001-1452,
27
, pp.
1319
1325
.
You do not currently have access to this content.