With a multi-axial test machine, ratcheting was studied experimentally for pressurized low carbon steel elbows under reversed bending. The maximum ratcheting strain occurred mainly in the hoop direction at flanks. Hoop ratcheting strain was found at intrados for individual specimen. No ratcheting strain was found at the extrados for all tests. Ratcheting strain rate grew with increase of the bending loading level at the same internal pressure or with an increase of internal pressure at the same bending load. Ratcheting simulation was performed by EPFEA with ANSYS in which Ohno-Wang and Chen-Jiao-Kim kinematic hardening rules were applied by user programing. By comparing with the experimental data, it is found that predicted results by the Chen-Jiao-Kim model simulates reasonably. Ratcheting boundary was determined by C-TDF method with the Chen-Jiao-Kim model.

1.
Boussa
,
D.
,
DangYan
,
K.
,
Labbe’
,
P.
et al.
, 1994, “
Fatigue-Seismic Ratcheting Interaction in Pressurized Elbows
,”
ASME J. Pressure Vessel Technol.
0094-9930,
116
, pp.
396
402
.
2.
Dang
,
Van K.
, and
Moumni
,
Z.
, 2000, “
Evaluation of Fatigue-Ratcheting Damage of a Pressurized Elbow Undergoing Damage Seismic Inputs
,”
Nucl. Eng. Des.
0029-5493,
196
, pp.
41
50
.
3.
Huang
,
Ching-Tung
,
Iwan
,
W. D.
,
Jaquay
,
K. R.
, and
Chokshi
,
N. C.
, 1998, “
Cyclic Moment Response Characteristics and Seismic Margins of Elbows
,”
PVP (Am. Soc. Mech. Eng.)
0277-027X,
360
, pp.
271
281
.
4.
Garud
,
Y. S.
,
Durlofsky
,
H.
, and
Tagart
,
S. W.
Jr.
, 1993, “
Analysis and Prediction of Fatigue-Ratcheting: Comparison With Tests and Code Rules
,”
PVP (Am. Soc. Mech. Eng.)
0277-027X,
266
, pp.
23
32
.
5.
Yao
,
Y. P.
,
Lu
,
M.-W.
, and
Zhang
,
X.
, 2004, “
Elasto-Plastic Behavior of Pipe Subjected to Steady Axial Load and Cyclic Bending
,”
Nucl. Eng. Des.
0029-5493,
229
(
2–3
), pp.
189
197
.
6.
Yahiaoui
,
K.
,
Moffat
,
D. G.
, and
Moreton
,
D. N.
, 1996, “
Pressurized Piping Elbows Under Simulated Seismic Bending: Design Code Implications
,”
Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering
,
210
(
E3
), pp.
159
170
.
7.
Yahiaoui
,
K.
,
Moffat
,
D. G.
, and
Moreton
,
D. N.
, 1996, “
Damage Assessment of Piping Elbows Loaded by Steady Internal Pressure and Dynamic In-Plane or Out-of-Plane Bending
,”
Proceedings of the International Conference on Pressure Vessel Technology
, ICPVT, Vol.
1
, pp.
361
375
.
8.
Yahiaoui
,
K.
,
Moffat
,
D. G.
, and
Moreton
,
D. N.
, 1996, “
Response and Cyclic Strain Accumulation of Pressurized Piping Elbows Under Dynamic In-Plane Bending
,”
J. Strain Anal. Eng. Des.
0309-3247,
31
(
2
), pp.
135
151
.
9.
Yahiaoui
,
K.
,
Moffat
,
D. G.
, and
Moreton
,
D. N.
, 1996, “
Response and Cyclic Strain Accumulation of Pressurized Piping Elbows Under Dynamic Out-of-Plane Bending
,”
J. Strain Anal. Eng. Des.
0309-3247,
31
(
2
), pp.
153
166
.
10.
Acker
,
D.
,
Toubout
,
F.
, and
Autrusson
,
B.
, 1992, “
Experimental Analysis of Ratcheting in Elbows
,”
PVP (Am. Soc. Mech. Eng.)
0277-027X,
235
, pp.
87
91
.
11.
Tan
,
Y.
,
Matzen
,
V. C.
, and
Yu
,
L.
, 2002, “
Correlation of Test and FEA Results for the Nonlinear Behavior of Straight Pipes and Elbows
,”
ASME J. Pressure Vessel Technol.
0094-9930,
124
, pp.
465
475
.
12.
Stearns
,
J. C.
, and
Paul
,
C. L.
, 1993, “
Incremental Plastic Strain of a Pipe Elbow With Varying Bend Radii
,”
PVP (Am. Soc. Mech. Eng.)
0277-027X,
264
, pp.
169
174
.
13.
Zhao
,
Y.
, 1997, “
Random Vibration and Ratcheting Analysis Based Evaluation of Current ASME Code Nuclear Piping Design Criteria
,”
PVP (Am. Soc. Mech. Eng.)
0277-027X,
345
, pp.
19
26
.
14.
Kobayashi
,
H.
, and
Fujiwaka
,
T.
, 1997, “
Analytical Study of the Response of Piping with Mechanical Ratcheting Under Dynamic Loads
,”
PVP (Am. Soc. Mech. Eng.)
0277-027X,
345
, pp.
223
228
.
15.
Gao
,
B. J.
, and
Chen
,
X.
, 2004, “
Ratcheting Analysis of Pressurized Elbow Subjected to Out-of-Plane Symmetric Bending
,”
J. Mech. Strength (in Chinese)
,
26
(
3
), pp.
287
290
.
16.
Yang
,
J. F.
, and
Gurdal
,
R.
, 2003, “
Piping Elbow Cyclic Analyses for Shakedown Verification
,”
PVP (Am. Soc. Mech. Eng.)
0277-027X,
453
, pp.
49
59
.
17.
Ueda
,
M.
,
Kano
,
T.
, and
Yoshitoshi
,
A.
, 1990, “
Thermal Ratcheting Criteria and Behavior of Piping Elbows
,”
ASME J. Pressure Vessel Technol.
0094-9930,
112
(
1
), pp.
71
75
.
18.
Gurdal
,
R. J.
, 1994, “
Simplified Methods for Shakedown Verification of Austenitic Steel Piping: Comparison With Ratchetting Experimental Analyses of Piping Elbows
,”
PVP (Am. Soc. Mech. Eng.)
0277-027X,
278
, pp.
47
57
.
19.
Moreton
,
D. N.
,
Yahiaoui
,
K.
, and
Moffat
,
D. G.
, 1996, “
Onset of Ratchetting in Pressurized Piping Elbows Subjected to In-Plane Bending Moments
,”
Int. J. Pressure Vessels Piping
0308-0161,
68
, pp.
73
79
.
20.
Asada
,
S.
,
Yamashita
,
N.
, and
Okamoto
,
A.
, 2002, “
Verification of Alternative Criteria for Shakedown Evaluation Using Flat Head Vessel
,”
PVP (Am. Soc. Mech. Eng.)
0277-027X,
439
, pp.
17
23
.
21.
Yamamoto
,
Y.
,
Yamashita
,
N.
, and
Tanaka
,
M.
, 2002, “
Evaluation of Thermal Stress in Plastic FEA
,”
PVP (Am. Soc. Mech. Eng.)
0277-027X,
439
, pp.
3
10
.
22.
Boussaa
,
D. J.
,
Dang Van
,
K.
, and
Tang
,
H. T.
, 1995, “
Axisymmetric Elastic-Plastic FE Analysis of Pressurized Elbows
,”
ASME J. Pressure Vessel Technol.
0094-9930,
117
(
4
), pp.
357
364
.
23.
Kalnins
,
A.
, 2002, “
Shakedown and Ratcheting Directives of ASME B and PV Code and Their Execution
,”
PVP (Am. Soc. Mech. Eng.)
0277-027X,
439
, pp.
47
55
.
24.
Kobayashi
,
M.
, and
Ohno
,
N.
, 2002, “
Implementation of Cyclic Plasticity Models Based on a General Form of Kinematic Hardening
,”
Int. J. Numer. Methods Eng.
0029-5981,
53
, pp.
2217
2238
.
25.
Kobayashi
,
M.
,
Mukai
,
M.
, and
Takahashi
,
H.
, 2003, “
Implicit Integration and Consistent Tangent Modulus of a Time-Dependent Non-unified Constitutive Model
,”
Int. J. Numer. Methods Eng.
0029-5981,
58
, pp.
1523
1543
.
26.
Kang
,
G.
, 2004, “
A Visco-Plastic Constitutive Model for Ratcheting of Cycli-cally Stable Material and Its Finite Element Implementation
,”
Mech. Mater.
0167-6636,
36
, pp.
299
312
.
27.
Postberg
,
B.
, and
Weiß
,
E.
, 2000, “
Simulation of Ratcheting of AISI 316L(N) Steel Under Nonproportional Uniaxial Loading and High Number of Load Cycles Using the Ohno and Wang Nonlinear Kinematic Material Model
,”
Int. J. Pressure Vessels Piping
0308-0161,
77
, pp.
207
213
.
28.
Kulkarni
,
S. C.
,
Desai
,
Y. M.
,
Kant
,
T.
,
Reddy
,
G. R.
,
Parulekar
,
Y.
, and
Vaze
,
K. K.
, 2003, “
Uniaxial and Biaxial Ratcheting Study of SA333 Gr.6 Steel at Room Temperature
,”
Int. J. Pressure Vessels Piping
0308-0161,
80
, pp.
179
185
.
29.
Ohno
,
N.
, and
Wang
,
J. D.
, 1993, “
Kinematic Hardening Rules With Critical State of Dynamic Recovery. Part I: Formulations and Basic Features for Ratcheting Behavior
,”
Int. J. Plast.
0749-6419,
9
, pp.
375
390
.
30.
Ohno
,
N.
, and
Wang
,
J. D.
, 1993, “
Kinematic Hardening Rules With Critical State of Dynamic Recovery. Part II: Application to Experiments of Ratcheting Behavior
,”
Int. J. Plast.
0749-6419,
9
, pp.
391
403
.
31.
Bari
,
S.
, and
Hassan
,
T.
, 2000, “
Anatomy of Coupled Constitutive Models for Ratcheting Simulation
,”
Int. J. Plast.
0749-6419,
16
, pp.
381
409
.
32.
Chen
,
X.
,
Jiao
,
R.
, and
Kim
,
K. S.
, 2005, “
On the Ohno-Wang Kinematic Hardening Rules for Multiaxial Ratcheting Modeling of Medium Carbon Steel
,”
Int. J. Plast.
0749-6419,
21
, pp.
161
184
.
33.
Prager
,
W.
, 1956, “
A New Method of Analyzing Stresses and Strains in Work Hardening Plastic Solids
,”
ASME J. Appl. Mech.
0021-8936,
23
, pp.
493
496
.
You do not currently have access to this content.