The r-node method has been developed earlier as a technique to find the limit load using the Elastic Modulus Adjustment Procedures. It utilizes the systematic redistribution of the stress to find the load-controlled locations in a component to estimate the collapse load. In this paper, the method is shown to be applicable for multiple loads. A simple cantilever beam is analyzed using the redistribution-node (r-node) method subjected to both bending force and moment. The results compare well with the closed-form solution of the problem. The method is then used to estimate the limit load for an elbow subjected to in-plane and out-of-plane moment. The results compare well with the elastic-plastic analysis.

1.
Soderberg
,
C. R.
, 1941, “
Interpretation of Creep Tests on Tubes
,”
Trans. ASME
0097-6822,
63
, pp.
737
748
.
2.
Seshadri
,
R.
, and
Marriott
,
D. L.
, 1993, “
On Relating the Reference Stress, Limit Load and the ASME Stress Classification Concepts
,”
Int. J. Pressure Vessels Piping
0308-0161,
56
, pp.
387
408
.
3.
Seshadri
,
R.
, 1991, “
The Generalized Local Stress Strain (GLOSS) Analysis—Theory and Applications
,”
ASME J. Pressure Vessel Technol.
0094-9930,
113
, pp.
219
227
.
4.
Seshadri
,
R.
, and
Fernando
,
C. P. D.
, 1992, “
Limit Loads of Mechanical Components and Structures Using the GLOSS R-Node Method
,”
ASME J. Pressure Vessel Technol.
0094-9930,
114
, pp.
201
208
.
5.
Mackenzie
,
D.
, and
Boyle
,
J. T.
, 1993, “
A Method of Estimating Limit Loads by Iterative Elastic Analysis I: Simple Examples
,”
Int. J. Pressure Vessels Piping
0308-0161,
53
, pp.
77
95
.
6.
Mangalaramanan
,
S. P.
, and
Seshadri
,
R.
, 1997, “
Limit Loads of Layered Beams and Layered Cylindrical Shells Using Reduced Modulus Methods
,”
ASME Pressure Vessels and Piping Conference
, Orlando.
7.
Marriott
,
D. L.
, 1988, “
Evaluation of Deformation or Load Control of Stresses Under Inelastic Conditions Using Elastic Finite Element Stress Analysis
,” ASME PVP, Vol.
136
,
3
9
.
8.
Kraus
,
H.
, 1980,
Creep Analysis
,
Wiley
, New York.
9.
Shalaby
,
M. A.
, and
Younan
,
M. Y. A.
, 1998, “
Limit Loads for Pipe Elbows With Internal Pressure Under In-plane Closing Bending Moment
,”
ASME J. Pressure Vessel Technol.
0094-9930,
120
, pp.
35
42
.
10.
Mourad
,
H. M.
, and
Younan
,
M. Y. A.
, 2002, “
Limit-Load Analysis of Pipe Bends Under Out-of-Plane Moment Loading and Internal Pressure
,”
ASME J. Pressure Vessel Technol.
0094-9930,
124
, pp.
32
37
.
11.
Chattopadhyay
,
J.
,
Nathani
,
D. K.
,
Dutta
,
B. K.
, and
Kushwaha
,
H. S.
, 2000, “
Closed-Form Collapse Moment Equations of Elbows Under Combined Internal Pressure and In-Plane Bending Moment
,”
ASME J. Pressure Vessel Technol.
0094-9930,
122
, pp.
431
436
.
12.
Dhalla
,
A. K.
(ed.), 1991, “
Recommended Practice in Elevated Temperature Design: A Compendium of Breeder Reactor Experiences (1970-1987), II, Preliminary Design and Simplified Methods
,” Welding Research Council.
13.
Sim
,
R. F.
, 1971, “
Evaluation of Reference Stress Parameters for Structures Subject to Creep
,”
J. Mech. Eng. Sci.
0022-2542,
13
, pp.
47
50
.
14.
Ponter
,
A. R. S.
,
Fuschi
,
P.
, and
Engelhardt
,
M.
, 2000, “
Limit Analysis for a General Class of Yield Conditions
,”
Eur. J. Mech. A/Solids
0997-7538,
19
, pp.
401
421
.
15.
Ponter
,
A. R. S.
, and
Engelhardt
,
M.
, 2000, “
Shakedown Limit for a General Yield Condition
,”
Eur. J. Mech. A/Solids
0997-7538,
19
, pp.
423
445
.
16.
Ponter
,
A. R. S.
, and
Chen
,
H.
, 2001, “
A Programming Method for Limit Load and Shakedown Analysis of Structures
,” ASME PVP-Vol.
430
,
155
160
.
17.
Pan
,
L.
, and
Seshadri
,
R.
, 2002, “
Limit Load Estimation Using Plastic Flow Parameter in Repeated Elastic Finite Element Analyses
,”
ASME J. Pressure Vessel Technol.
0094-9930,
124
, pp.
433
439
.
You do not currently have access to this content.