Interface cracks are seldom subjected to pure Mode I conditions. Stationary cracks between two distinct, bonded elastic-creep materials subjected to remotely applied mixed mode loading are simulated using the finite element method (FEM). Plane strain conditions are assumed. In most cases a functionally graded transition layer is included between two homogeneous, yet distinctive, materials. Examples of such systems include bonded structures or repaired components subjected to elevated temperatures. Numerical solutions based on the asymptotic fields of the homogeneous and heterogeneous Arcan-type specimens are presented. Creep ductility-based damage models are used to predict the initial crack propagation trajectory. Incorporation of functionally graded transition layer regions was determined to affect the evolution of time-dependent stress components in the vicinity of the crack tip. The magnitude and direction of crack tip propagation can then be optimized with respect to interface properties.

1.
Liaw
,
P. K.
,
Saxena
,
A.
, and
Schaefer
,
J.
,
1989
, “
Estimating Remaining Life of Elevated-Temperature Steam Pipes-Part I. Materials Properties
,”
Eng. Fract. Mech.
,
32
(
5
), pp.
675
708
.
2.
Saxena, A., 1998, Nonlinear Fracture Mechanics for Engineers, New York, CRC Press.
3.
Adefris, N., 1993, “Creep-Fatigue Crack Growth Behavior of 1Cr-1Mo-0.25V Rotor Steel,” PhD thesis, Georgia Institute of Technology, Atlanta, GA.
4.
Cretegny, L., 1996, “Fracture Toughness Behavior of Weldments at Elevated Temperature,” MS thesis, Georgia Institute of Technology, Atlanta, GA.
5.
Shukla
,
A.
,
2001
, “
High-Speed Fracture Studies on Bimaterial Interfaces Using Photoelasticity
,”
J. Strain Anal. Eng. Des.
,
36
(
2
), pp.
119
142
.
6.
Sorensen
,
B. F.
, and
Horsewell
,
A.
,
2001
, “
Crack Growth Along Interfaces in Porous Ceramic Layers
,”
J. Am. Ceram. Soc.
,
84
(
9
), pp.
2051
2059
.
7.
Varias
,
A. G.
,
Mastorakos
,
I.
, and
Aifantis
,
E. C.
,
1999
, “
Numerical Simulation of Interface Crack in Thin Films
,”
Int. J. Fract.
,
98
(
3
), pp.
197
207
.
8.
Shih
,
C. F.
, and
Asaro
,
R. J.
,
1988
, “
Elastic-Plastic Analysis of Cracks on Bimaterial Interfaces: Part I-Small Scale Yielding
,”
ASME J. Appl. Mech.
,
55
(
2
), pp.
299
316
.
9.
Shih
,
C. F.
, and
Asaro
,
R. J.
,
1989
, “
Elastic-Plastic Analysis of Cracks on Bimaterial Interfaces: Part II-Structure of Small-Scale Yielding Fields
,”
ASME J. Appl. Mech.
,
56
, pp.
763
779
.
10.
Shih
,
C. F.
,
Asaro
,
R. J.
, and
O’Dowd
,
N. P.
,
1991
, “
Elastic-Plastic Analysis of Cracks on Bimaterial Interfaces: Part III-Large Scale Yielding
,”
ASME J. Appl. Mech.
,
58
(
2
), pp.
450
462
.
11.
Shih
,
C. F.
,
Asaro
,
R. J.
, and
O’Dowd
,
N. P.
,
1993
, “
Elastic-Plastic Analysis of Cracks on Bimaterial Interfaces: Interfaces With Structure
,”
Mater. Sci. Eng., A
,
162
, pp.
175
192
.
12.
Luo
,
X. F.
, and
Aoki
,
S.
,
1992
, “
Crack Growth on Elastic-Plastic Bimaterial Interfaces
,”
Int. J. Fract.
,
57
, pp.
365
379
.
13.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part 1—Yield Criteria and Flow Rules for Ductile Media
,”
ASME J. Eng. Mater. Technol.
,
99
, pp.
2
15
.
14.
Segle
,
P.
,
Andersson
,
P.
, and
Samuelson
,
L.
,
1998
, “
A Parametric Study of Creep Crack Growth in Heterogeneous CT Specimens by Use of Finite Element Simulations
,”
Materials at High Temperatures
,
15
(
2
), pp.
63
68
.
15.
Rice
,
J. R.
, and
Tracey
,
D. M.
,
1969
, “
On the Ductile Enlargement of Voids in Triaxial Stress Fields
,”
J. Mech. Phys. Solids
,
17
, pp.
102
217
.
16.
Biner
,
S. B.
,
1998
, “
Characteristics of Interface Cracks
,”
Mater. Sci. Eng., A
,
244
, pp.
233
249
.
17.
Tvergaard
,
V.
,
1984
, “
On the Creep Constrained Diffusive Cavitation of Grain Boundary Facets
,”
J. Mech. Phys. Solids
,
32
(
5
), pp.
373
393
.
18.
Kong
,
X. M.
,
Schlu¨ter
,
N.
, and
Dahl
,
W.
,
1995
, “
Effect of Triaxial Stress on Mixed Mode Fracture
,”
Eng. Fract. Mech.
,
52
(
2
), pp.
379
388
.
19.
Amstutz, B. E., Sutton, M. A., and Dawicke, D. S., 1995, “Experimental Study of Mixed Mode I/II Stable Crack Growth in Thin 2024-T3 Aluminum,” Fatigue and Fracture, ASTM STPZ 1256, 26, pp. 256–273.
20.
James, M. A., 1998, “A Plane Stress Finite Element Model for Elastic-Plastic Mode I/II Crack Growth,” Ph.D. dissertation, Kansas State University, Manhattan, KS.
21.
Kachanov
,
L. M.
,
1958
, “
Time to Rupture Process Under Creep Conditions
,”
Izv. Akad. Nank.
,
8
, pp.
26
31
.
22.
Hyde, T. H., Sun, W., and Williams, J. A., 1999, “Creep Behavior of Parent, Weld and HAZ Materials of New, Service-Aged, and Repaired 12 Cr12 Mo14 V: 214 Cr1Mo Pipe Welds at 640°C,” Materials at High Temperatures, 16(3), pp. 117–129.
23.
Hayhurst, D. R., 1983, “On the Role of Continuum Damage on Structural Mechanics,” Engineering Approaches to High Temperature Fracture, B. Wilshire and D. R. J. Owen, eds, Pineridge Press, Swansea, UK, pp. 85–233.
24.
Atkinson
,
C.
,
1977
, “
On Stress Singularities and Interfaces in Linear Elastic Fracture Mechanics
,”
Int. J. Fract.
,
13
, pp.
807
820
.
25.
Delale
,
F.
, and
Erdogan
,
F.
,
1988
, “
Interface Crack in Nonhomogeneous Elastic Medium
,”
Int. J. Eng. Sci.
,
26
(
6
), pp.
559
568
.
26.
Ozturk
,
M.
, and
Erdogan
,
F.
,
1993
, “
Antiplane Shear Crack Problem in Bonded Materials With a Graded Interfacial Zone
,”
Int. J. Eng. Sci.
,
31
(
12
), pp.
1641
1657
.
27.
Shaw
,
L. L.
,
1998
, “
The Crack Driving Force of Functionally Graded Materials
,”
J. Mater. Sci. Lett.
,
17
, pp.
65
67
.
28.
Saxena
,
A.
,
Cretegny
,
L.
,
Grover
,
P. S.
, and
Norris
,
R. H.
,
1998
, “
Modeling of Fracture and Crack Growth in Welds Operating at Elevated Temperatures
,”
Materials at High Temperatures
,
15
(
3
), pp.
259
263
.
29.
ABAQUS® User’s Manual v.5.8, 1999, ABAQUS®, Providence, RI, Hibbitt, Karlsson, and Sorensen, Inc.
30.
Shbeeb
,
N. I.
, and
Binienda
,
W. K.
,
1999
, “
Analysis of an Interface Crack for a Functionally Graded Strip Sandwiched Between Two Homogeneous Layers of Finite Thickness
,”
Eng. Fract. Mech.
,
64
, pp.
693
720
.
31.
Brockenbrough
,
J. R.
,
Shih
,
C. F.
, and
Suresh
,
S.
,
1991
, “
Transient Crack-Tip Fields for Mixed-Mode Power Law Creep
,”
Int. J. Fract.
,
49
, pp.
177
202
.
You do not currently have access to this content.