This paper presents the state of the art and the progress made in the numerical simulation of the stress state in a complex multi-material structure, using not only sophisticated finite element tools, but also the simplified engineering methods. A comparison of the numerical results concerning residual stresses is made with those measured using X-ray diffraction method and incremental hole-drilling technique. Finally, an example is given on the analysis of a fully circumferential crack in a typical bimetallic weld under pressure, thermal, and residual stresses. [S0094-9930(00)00703-4]

1.
Bergheau, J.-M., and Leblond, J.-B., 1991, “Coupling Between Heat Flow, Metallurgy and Stress-strain Computations in Steels—The Approach Developed in the Computer Code SYSWELD for Welding or Quenching,” Modeling of Casting, Welding and Advanced Solidification Processes V, M. Rappaz, M. R. Ozgu, and K. W. Mahin. eds., The Minerals, Metals & Materials Society, pp. 203–210.
2.
Leblond J.-B., Pont D., Devaux J., Bru D., and Bergheau J.-M., 1997, “Metallurgical and Mechanical Consequences of Phase Transformations in Numerical Simulations of Welding Processes,” Modeling in Welding, Hot Powder Forming and Casting, Chap. 4, L. Karlsson, ed., ASM International, pp. 61–89.
3.
Leblond
,
J.-B.
, and
Devaux
,
J.-C.
,
1984
, “
A New Kinetic Model for Anisothermal Metallurgical Transformations in Steels Including the Effect of Austenit Grain Size
,”
Acta Metall.
,
32
, pp.
137
146
.
4.
Karlsson L., and Lindgren, L.-E., 1991, “Combined Heat and Stress-Strain Calculations,” Modeling of Casting, Welding and Advanced Solidification Processes V, M. Rappaz, M. R. Ozgu, and K. W. Mahin, eds, The Minerals, Metals & Materials Society, pp. 187–202.
5.
Leblond
,
J.-B.
,
Mottet
,
G.
, and
Devaux
,
J.-C.
,
1986
, “
A Theoretical and Numerical Approach to the Plastic Behavior of Steels During Phase Transformations—I: Derivation of General Relations
,”
J. Mech. Phys. Solids
,
34
, pp.
395
409
.
6.
Greenwood
,
G. W.
, and
Johnson
,
R. H.
,
1965
, “
The Deformation of Metals Under Small Stresses During Phase Transformations
,”
Proc. R. Soc. London, Ser. A
,
283
, pp.
403
422
.
7.
Leblond
,
J.-B.
,
Mottet
,
G.
, and
Devaux
,
J.-C.
,
1986
, “
A Theoretical and Numerical Approach to the Plastic Behavior of Steels During Phase Transformations—II: Study of Classical Plasticity for Ideal-Plastic Phases
,”
J. Mech. Phys. Solids
,
34
, pp.
411
432
.
8.
Leblond
,
J.-B.
,
Devaux
,
J.
, and
Devaux
,
J.-C.
,
1989
, “
Mathematical Modeling of Transformation Plasticity in Steels—I: Case of Ideal-Plastic Phases
,”
Int. J. Plast.
,
5
, pp.
551
572
.
9.
Leblond
,
J.-B.
,
1989
, “
Mathematical Modeling of Transformation Plasticity in Steels—II: Coupling With Strain Hardening Phenomena
,”
Int. J. Plast.
,
5
, pp.
573
591
.
10.
Leblond, J.-B., 1989, “Simulation nume´rique du soudage—Mode`le de viscoplasticite,” FRAMASOFT Internal Report, CSS.L.NT.89/4015.
11.
Bru, D., 1993, “Analyze du comportement d’un de˙faut exte´rieur situe˙ dans le beurrage d’une liaison bime´tallique—Rapport A: Pre´sentation des travaux-Annexe 1: caracte´ristiques physiques des mate´riaux utilise´es dans les simulations nume´riques,” FRAMASOFT+CSI Internal Report, LESW93/2015.
12.
Todeschini, P., 1992, “Mesures de contraintes par diffraction de rayons X en peau externe de la jonctioa`n bi-me´tallique de la tubulure de cuve REP H2 de IRAN 1”, EDF Internal note HT-41/NEQ 1368-A, EDF-DER Renardie`res, France, Apr.
13.
Pineau, A., 1981, “Review of Fracture Micromechanisms and a Local Approach to Predicting Crack Resistance in Low Strength Steels,” Advances in Fracture Research, ICF5, Pergamon, Vol. 2, pp. 553–580.
14.
Devaux, J. C., Mottet, G., Houssin, B., and Pelissier Tanon, A., 1987, “Prediction of Overall Toughness of Bimetallic Welds Through Numerical Analysis According to the Local Approach of Tearing Fracture,” Numerical Methods in Fracture Mechanics, A. R. Luxmoore, D. R. J. Owen, Y. P. S. Rajapakse, and M. F. Kanninen, eds., Pineridge Press, pp. 325–335.
15.
Rice
,
J. R.
, and
Tracey
,
D. M.
,
1969
, “
On the Ductile Enlargement of Voids in Triaxial Stress Fields
,”
J. Mech. Phys. Solids
,
17
, p.
201
201
.
16.
Destuynder
,
Ph.
, and
Djoua
,
M.
,
1981
, “
Sur une interpre´tation mathe´matique de l’inte´grale de Rice en the´orie de la rupture fragile
,”
Math. Methods Appl. Sci.
,
3
, pp.
70
87
.
17.
Gilles, Ph., Mourgue, Ph., Lienard, C., and Bois, C., 1992, “Efficiency and Accuracy of the G-θ Domain Integral for Elasto-Plastic Crack Driving Force Computations,” Proc., ICCES’92.
You do not currently have access to this content.