Physically based continuum creep damage mechanics (CDM) has been reviewed and shown to provide a unifying framework for some seemingly diverse methods of predicting design and remanent creep lifetimes. These methods—theta projection, omega parameter, Larson-Miller parameter, and Robinson’s life fraction rule—exhibit certain strengths in common with CDM, but also weaknesses which CDM identifies and avoids. CDM consists of sets of coupled rate equations for inelastic strain, internal stress, and microstructural evolution (damage) which can then be integrated under boundary conditions appropriate to the test or service operating conditions: constant load/temperature for creep; constant total strain for stress-relaxation, variable stress/temperature, etc. Other state-variable approaches to creep and cyclic plasticity (for example, those due to Bodner, Miller, Chaboche, and Robinson), differ from CDM mainly in concentrating on the primary/secondary stages of creep (or cyclic work-hardening) and/or by their introduction of damage in an empirical Kachanov manner. The application of physically based CDM to LCF/thermal fatigue and its potential for predicting lifetimes of welded joints are also discussed. [S0094-9930(00)00903-3]

1.
Cane, B. J., and Townsend, R. D., 1985, Flow and Fracture at Elevated Temperatures, R. Raj, ed., ASM, OH, pp. 279–316.
2.
Evans, R. W., Parker, J. D., and Wilshire, B., 1982, Recent Advances in Creep and Fracture of Engineering Materials and Structures, B. Wilshire and D. R. J. Owen, eds., Pineridge Press, Swansea, UK, pp. 135–84.
3.
Evans, R. W., and Wilshire, B., 1996, Structural Materials: Engineering Application Through Scientific Insight, E. D. Hondros and M. McLean, eds., Inst. of Materials, London, UK, pp. 155–72.
4.
Prager
,
M.
,
1994
,
ASME Pressure Vessel Piping Conf.
,
288
, pp.
1
20
.
5.
Robinson
,
E. L.
,
1938
,
Trans. ASME
,
60
, p.
253
253
.
6.
Robinson
,
E. L.
,
1953
,
Trans. AIME
,
7a
, p.
777
777
.
7.
Larson
,
F. R.
, and
Miller
,
I.
,
1952
,
Trans. ASME
,
174
, p.
765
765
.
8.
Manson, S. S., and Haferd, A. M., 1953, N.A.C.A. Tech. Note 2890.
9.
Ashby, M. F., and Dyson, B. F., 1984, Advances in Fracture Research, S. R. Valluri et al., eds., Pergamon Press, Vol. 1, pp. 3–30.
10.
Dyson
,
B. F.
,
1988
,
Rev. Phys. Appl.
,
23
, pp.
605
13
.
11.
Blum
,
W.
,
1983
,
Scr. Metall.
,
18
, pp.
1383
88
.
12.
Eggeler
,
G.
,
Nilsvang
,
N.
, and
Ilschner
,
B.
,
1987
,
Steel Res.
,
58
, pp.
97
103
.
13.
Blum
,
W.
, and
Straub
,
S.
,
1991
,
Steel Res.
,
62
, No.
2
, pp.
72
74
.
14.
Straub, S., Polcik, P., and Blum, W., 1994, Strength of Materials, Oikawa et al., eds., Japan Institute of Materials, pp. 623–626.
15.
Dyson
,
B. F.
, and
McLean
,
M.
,
1983
,
Acta Metall.
,
31
, pp.
17
27
.
16.
Alexander
,
H.
, and
Haasen
,
P.
,
1968
,
Solid State Phys.
,
22
, pp.
27
158
.
17.
Gibbons
,
T. B.
, and
Henderson-Brown
,
M.
,
1975
,
Scr. Metall.
,
9
, pp.
15
16
.
18.
Barbosa, A., Taylor, N. G., Ashby, M. F., Dyson, B. F., and McLean, M., 1988, Superalloys 1988, Duhl et al., eds., Met. Soc. AIME, p. 683.
19.
Ghosh
,
R.
,
Curtis
,
R.
, and
McLean
,
M.
,
1990
,
Acta Metall. Mater.
,
38
, pp.
1977
92
.
20.
Greenwood
,
G. W.
,
1956
,
Acta Metall.
,
4
, pp.
243
48
.
21.
Wagner
,
C.
,
1961
,
Z. Elektrochem.
,
65
, p.
581
581
.
22.
Liftshitz
,
I. M.
, and
Slyozov
,
I.
,
1961
,
J. Phys. Chem. Solids
,
19
, p.
35
35
.
23.
Dyson, B. F., and Osgerby, S., 1993, NPL Report DMA (A116).
24.
Dyson, B. F., 1999, in Creep Behavior of Advanced Materials for the 21st Century, Mishra, R. S., Mukherjee, A. K., and Murty, K. L., eds., TMS Warrendale, PA, 3–12.
25.
Kadoya, Y., Nishimura, N., Dyson, B. F., and McLean, M., 1997, Creep & Fracture of Engineering Materials & Structures, Earthman, J. C., and Mohamed, F. A., eds., TMS, Warrendale, PA, 343–352.
26.
Dyson, B. F., and Osgerby, S., 1989, Materials and Engineering Design: The Next Decade, Dyson, B. F., and Hayhurst, D. R., eds., The Inst. of Metals, London, UK, pp. 373–379.
27.
Janson
,
J.
, and
Hult
,
J.
,
1977
,
J. Me´caniq. Appl.
,
1
, pp.
69
84
.
28.
Saanouni
,
K.
,
Chaboche
,
J. L.
, and
Bathias
,
C.
,
1986
,
J. Eng. Frac. Mech.
,
25
, pp.
677
691
.
29.
Lemai^tre, J., and Chaboche, J. L., 1990, Mechanics of Materials, Cambridge University Press, Caubridge, UK.
30.
Chaboche
,
J. L.
, and
Nouailhas
,
D.
,
1989
,
Trans. ASME
,
111
, pp.
424
430
.
31.
Kachanov
,
L. M.
,
1958
,
Izv. Akad. Nauk SSSR, Ser. Fiz.
, (
8
), pp.
26
31
.
32.
Rabotnov, Y. N., 1969, Proc. XII IUTAM Congress, Stamford, CN, eds., Hetenyi & Vincenti, Springer, p. 137.
33.
Penny, R. K., and Marriott, D. L., 1995, Design for Creep, Chapman & Hall, London, UK.
34.
Leckie
,
F. A.
, and
Hayhurst
,
D. R.
,
1974
,
Proc. R. Soc. London, Ser. A
340
, pp.
323
347
.
35.
Leckie
,
F. A.
, and
Hayhurst
,
D. R.
,
1977
,
Acta Metall.
,
25
, pp.
1059
1070
.
36.
Ion, J. C., Barbosa, A., Ashby, M. F., Dyson, B. F., and McLean, M., 1986, NPL Report DMA (A115).
37.
McVetty
,
P. G.
,
1943
,
Trans. ASME
,
65
, pp.
761
769
.
38.
Dyson, B. F., and Loveday, M. S., 1980, Engineering Aspects of Creep, Mech. I., and London, E., UK, pp. 61–66.
39.
Hutchinson
,
J. W.
,
1983
,
Acta Metall.
,
31
, pp.
1079
1088
.
40.
Wert
,
C.
, and
Zener
,
C.
,
1950
,
J. Appl. Phys.
,
21
, p.
5
5
.
41.
Osgerby, S., Barbosa, A., and Dyson, B. F., 1992, NPL Report DMM (A35).
42.
Dyson
,
B. F.
,
Rogers
,
M. J.
, and
Loveday
,
M. S.
,
1976
,
Proc. R. Soc. London, Ser. A
,
349
, pp.
245
259
.
43.
Tipler, H. R., and Peck, M., 1981, NPL Report DMA (A33).
44.
Dyson, B. F., and McLean, M., 1998, in Microstructural Stability of Creep Resistant Alloys for High Temperature Plant Applications, A. Strang et al., eds., Institute of Materials, London, UK.
45.
Quested, P. N., and McLean, M., 1997, NPL, unpublished data.
46.
Dyson
,
B. F.
, and
Gibbons
,
T. B.
,
1987
,
Acta Metall.
,
31
, pp.
17
27
.
47.
Wilshire
,
B.
, and
Evans
,
R. W.
,
1989
,
Trans. ASME
,
111
, p.
217
217
.
48.
Henderson, P., and McLean, M., 1984, Creep & Fracture of Engineering Materials & Structures, Wilshire, B., and Owen, D. R. J., eds., Pineridge Press, Swansea, p. 319.
49.
Odquist
,
F. K. G.
, and
Hult
,
J.
,
1961
,
Ark. Fys.
,
19
, pp.
379
382
.
50.
Cocks
,
A. C. F.
, and
Ashby
,
M. F.
,
1982
,
Prog. Mater. Sci.
,
27
, p.
189
189
.
51.
Hales, R., Osgerby, S., and Dyson, B. F., 1997, Creep and Fracture of Engineering Materials and Structures, Earthman, J. C., and Mohamed, F. A., eds., TMS, Warrendale, PA, pp. 749–758.
52.
Chan
,
U. S.
,
Bodner
,
S. R.
, and
Lindholm
,
U. S.
,
1988
,
ASME J. Eng. Mater. Technol.
,
110
, pp.
1
8
.
53.
Merzer
,
A.
, and
Bodner
,
S. R.
,
1979
,
ASME J. Eng. Mater. Technol.
,
101
, p.
388
388
.
54.
Miller, A. K., 1997, Creep and Fracture of Engineering Materials and Structures, Earthman, J. C., and Mohamed, F. A., eds., TMS, Warrendale, PA, pp. 159–170.
55.
Miller, A. K., ed., 1987, Unified Constitutive Equations for Creep and Plasticity, Elsevier Applied Science.
56.
Chaboche
,
J. L.
, and
Rousselier
,
G.
,
1983
,
J. Pressure Vessel Technol.
,
105
, pp.
153
159
.
57.
Robinson, D. N., and Bartolotta, P. A., 1985, NASA Report CR 174836.
58.
Gooch, D. J., and Kimmins, S. T., 1987, Creep and Fracture of Engineering Materials and Structures, Wilshire, B., and Evans, R. W., eds., Inst. of Metals, London, UK, pp. 689–703.
59.
Cane
,
B. J.
,
1979
,
Metal Sci.
,
13
, pp.
287
294
.
60.
Evans, R. W., 1989, Materials and Engineering Design: The Next Decade, Dyson, B. F., and Hayhurst, D. R., eds., The Inst. of Metals, London, UK, pp. 185–192.
61.
Othman
,
A. M.
,
Dyson
,
B. F.
,
Hayhurst
,
D. R.
, and
Lin
,
J.
,
1994
,
Acta Metall. Mater.
,
42
, pp.
597
611
.
62.
Monkman
,
F. C.
, and
Grant
,
N. J.
,
1956
,
Proc. ASTM
,
56
, p.
593
593
.
You do not currently have access to this content.