The demand for improved efficiency and power output of energy conversion systems has lead to an increase of gas inlet temperatures in modern land-based gas turbines. The resulting increase of component surface temperature leads to an enhanced oxidation attack of the blade coating, which, in stationary gas turbines, is usually of the MCrAlY (with M = Co and/or Ni) type. Considerable efforts have been made in the improvement of the high temperature properties of MCrAlY coatings by additions of minor alloying elements. In the present paper, the effect of systematic composition variations, especially yttrium, silicon, and titanium additions, on the protective properties of MCrAlY coatings are presented. The coatings were applied to a steel substrate by low-pressure plasma spraying. Then, free-standing MCrAlY-bodies were machined from the coating. Isothermal and cyclic oxidation tests were carried out in the temperature range 950°C–1100°C. The effect of systematic variation of titanium and silicon contents on oxidation and micro structural stability was studied by characterization of the coating and the corrosion products using light and electron optical microscopy and by secondary neutrals mass spectrometry (SNMS).

1.
Abderrazik
G. B.
,
Moulin
G.
,
Huntz
A. M.
,
Young
E. W. A.
, and
de Wit
J. H. W.
,
1987
,
Solid State Ionics
, Vol.
22
, p.
285
285
.
2.
Czyrska-Filemonowicz, A., Versaci, A., Clemens, D., and Quadakkers, W. J., 1993, Conference on Microscopy of Oxidation, Cambridge, UK, The Institute of Materials, London, UK, p. 387.
3.
Fox
P.
, and
Tatlock
G. J.
,
1988
,
Materials Science and Technology
, Vol.
4
, p.
439
439
.
4.
Guzanov, B. N., Kositsyn, S. V., Kuznetsov, V. P., Sorokin, V. G., and Orlow, M. R., 1982, Protection of Metals, USSR, New York, NY, Vol. 18, p. 114.
5.
Huntz, A. M., 1989, The Role of Active Elements in the Oxidation Behaviour of High Temperature Alloys, ed., E. Lang, Elsevier Applied Science, London, UK, p. 81.
6.
Khan
A. S.
,
Lowell
C. E.
, and
Barrett
C. A.
,
1980
,
Journal of Electrochemical Society
, Vol.
127
, p.
670
670
.
7.
Kvernes
I.
, and
Lugscheider
E.
,
1988
,
Materialswissenschaften u. Werkstofftechnik
, Vol.
19
, p.
241
241
.
8.
Lagrange
M. H.
,
Huntz
A. M.
, and
Davidson
J. H.
,
1984
,
Corrosion Science
, Vol.
24
, No.
7
, p.
613
613
.
9.
Lavendel
H. W.
,
1975
,
Journal of Metals
, Vol.
27
, p.
4
4
.
10.
N’Gandu-Muamba
J. M.
, and
Streiff
R.
,
1989
,
Materials Science and Engineering A
, Vol.
121
, p.
391
391
.
11.
Peters
J.
, and
Grabke
H. J.
,
1984
,
Werkstoffe und Korrosion
, Vol.
35
, p.
385
385
.
12.
Pint
B. A.
,
1996
,
Oxid. Met.
, Vol.
45
, p.
1
1
.
13.
Quadakkers
W. J.
,
Holzbrecher
H.
,
Briefs
K. G.
, and
Beske
H.
,
1989
,
Oxid. Met.
, Vol.
32
, p.
67
67
.
14.
Sigler
D. R.
,
1989
,
Oxid. Met.
, Vol.
32
, p.
337
337
.
15.
Singheiser, L., 1991, Habilitation, University of Erlangen, Germany.
16.
Taniguchi
S.
, and
Shibata
T.
,
1986
,
Oxid. Met
, Vol.
25
, p.
201
201
.
17.
Taniguchi
S.
, and
Shibata
T.
,
1986
a,
Oxid. Met.
, Vol.
26
, p.
1
1
.
18.
Taniguchi
S.
, and
Shibata
T.
,
1988
,
Transaction of the Japan Institute of Metals
, Vol.
29
, p.
658
658
.
19.
Wahl, G., 1983, Aufbau von Oxidschichten auf Hochtemperaturwerkstoffen und ihre technische Bedeutung, ed., A. Rahmel, DGM, Oberursel, p. 209.
20.
Wambach
K.
,
Peters
J.
, and
Grabke
H. J.
,
1987
,
Materials Science and Engineering
, Vol.
88
, p.
205
205
.
21.
Weber
J. K. R.
, and
Hocking
M. G.
,
1989
,
Oxid. Met.
, Vol.
32
, p.
1
1
.
22.
Widyanto
B.
,
Bracho-Troconis
C.
, and
Lambertin
M.
,
1989
,
Materials Science and Engineering A
, Vol.
120
, p.
207
207
.
23.
Zheng
Y.
,
Cai
Y.
,
Mo
L.
, and
Yang
Z.
,
1991
,
Journal of Materials Engineering
, Vol.
13
, p.
39
39
.
This content is only available via PDF.
You do not currently have access to this content.