We outline here a method for incorporating the scatter observed in creep rupture times and fatigue cycles-to-failure into a probabilistic model for creep-fatigue failure. We do this within the context of the well-known damage fraction summation rule. Various numerical methods for calculating the probability of failure for given creep-fatigue loading cycles are discussed.

1.
Breitung
K.
,
1984
, “
Asymptotic Approximations for Multinormal Integrals
,”
ASCE Journal of Engineering Mechanics
, Vol.
110
, pp.
357
366
.
2.
Elishakoff, I., 1983, Probabilistic Methods in the Theory of Structures, Wiley-Interscience, New York, NY.
3.
Farris
J. D.
,
Lee
J. P.
,
Harlow
D. G.
, and
Delph
T. J.
,
1990
, “
On the Scatter in Creep-Rupture Times
,”
Metallurgical Transactions A
, Vol.
21A
, pp.
345
352
.
4.
Garofalo
F.
,
Whitmore
R. W.
,
Domis
W. F.
, and
von Gemmingen
F.
,
1961
, “
Creep and Creep-Rupture Relationships in an Austenitic Stainless Steel
,”
Transactions of the Metallurgical Society of the AIME
, Vol.
221
, pp.
310
319
.
5.
Gomuc
R.
, and
Bui-Quoc
T.
,
1986
, “
An Analysis of the Fatigue/Creep Behavior of Type 304 Stainless Steel using a Continuous Damage Approach
,”
ASME JOURNAL OF PRESSURE VESSEL TECHNOLOGY
, Vol.
108
, pp.
280
288
.
6.
Majumdar
S.
, and
Maiya
P. S.
,
1980
, “
A Mechanistic Model for Time-Dependent Fatigue
,”
ASME Journal of Engineering Materials and Technology
, Vol.
102
,
159
167
.
7.
Manson, S. S., Halford, G. R., and Hirschberg, M. H., 1971, “Creep-Fatigue Analysis by Strain-Range Partitioning,” Design for Elevated Temperature Environment, eds., S. Y. Zamrik and R. I. Jetter, American Society of Mechanical Engineers, New York, NY, pp. 12–28.
8.
Masden, S. O., Krenk, S., and Lind, N. C., 1986, Methods of Structural Safety, Prentice-Hall, Englewood Cliffs, NJ, pp. 65–69.
9.
Polhemus, J. F., Spaeth, C. E., and Vogel, W. H., 1972, “Ductility Exhaustion Model for Predicting Thermal Fatigue and Creep Interaction,” Fatigue at Elevated Temperatures, ASTM STP-465, A.S.T.M., Philadelphia, PA, pp. 625–635.
10.
Schijve
J.
,
1994
, “
Fatigue Predictions and Scatter
,”
Fatigue and Fracture of Engineering Materials and Structures
, Vol.
17
, pp.
381
396
.
11.
Schittkowski
K.
,
1986
, “
NLPQL: A FORTRAN Subroutine Solving Constrained Nonlinear Programming Problems
,”
Annuls of Operations Research
, Vol.
5
, pp.
485
500
.
12.
Sinclair
G. M.
, and
Dolan
T. J.
,
1953
, “
Effect of Stress Amplitude on Statistical Variability in Fatigue Life of 75S-T6 Aluminum Alloy
,”
TRANS. ASME
, Vol.
75
, pp.
867
872
.
13.
Tvedt, L., 1983, “Two Second-Order Approximations to the Failure Probability,” Veritas Report RDIV/20-004-83, Det norske Veritas, Oslo, Norway.
14.
Tvedt, L., 1988, “Second-Order Reliability by an Exact Integral,” Reliability & Optimization of Structural Systems ’88, ed., P. Thoft-Christensen, Springer-Verlag, Berlin, Germany, pp. 377–384.
15.
Yamaguchi
K.
, and
Nishijima
S.
,
1986
, “
Prediction and Evaluation of Long-Term Creep-Fatigue Life
,”
Fatigue and Fracture of Engineering Materials and Structures
, Vol.
9
, pp.
96
107
.
This content is only available via PDF.
You do not currently have access to this content.