The effects of crack closure on the near-threshold corrosion fatigue crack growth behavior of Mil S-24645 HSLA steel and its weld metal have been investigated in air, ASTM seawater at the free corrosion potential, and ASTM seawater at −0.8V and −1.0V (SCE) using frequencies of 10, 2, and 0.2 Hz, and a stress ratio, R = 0.1. Remaining life, in the presence and absence of crack closure, has been estimatedas a function of applied stress range for a structure containing a 3-mm-deep surface semi-elliptical flaw.

1.
Barsom, J. M., and Rolfe, S. T., 1987, “Fracture and Fatigue Control in Structures,” 2nd Edition, Prentice-Hall, Englewood Cliffs, NJ, p. 435.
2.
Beghini
M.
, and
Bertini
L.
,
1990
, “
Fatigue Crack Propagation Through Residual Stress Fields with Closure Phenomena
,”
Engineering Fracture Mechanics
, Vol.
36
, No.
3
, pp.
379
387
.
3.
Bignonnet, A., Namdar-Irani, R., and Truchon, M., 1982, “The Influence of Test Frequency on the Fatigue Crack Growth in Air, and Crack Surface Oxide Formation,” Scripta Metall., 16, 1982, pp. 795–798.
4.
Booth
G. S.
, and
Wylde
J. G.
,
1977
, “
Fatigue Problems in North Sea Structures
,”
Metals Science
, Vol.
11
, p.
308
308
.
5.
Chang, R. W., Kweon, Y. G., and Lim, C. B., 1987, “Influence of the Welding Heat Input on Fatigue Crack Growth in Offshore Structural Steel Welds,” Proceedings, Eighth International Conference on Offshore Mechanics and Arctic Engineering, ASME, New York, NY, pp. 419–430.
6.
Clapp, G. C., 1978, Ph.D. thesis, University of Manchester, Oct.
7.
Cochera, J. W., Tralmer, J. P., and Marshall, P. W., 1969, “Fatigue of Structural Steels for Offshore Platforms,” Paper OTC 2604, 1976 Offshore Technology Conference, Houston, TX, May.
8.
Davis
D. A.
, and
Czyryca
E. J.
,
1981
, “
Corrosion Fatigue Crack-Growth Behavior of HY-130 Steel and Weldments
,”
TRANS. ASME
, Vol.
103
, pp.
314
314
.
9.
Davis, D. A., and Czyryca, E. J., 1983, “Corrosion-Fatigue Crack Growth Characteristics of Several HY-100 Steel Weldments with Cathodic Protection,” Corrosion Fatigue: Mechanics, Metallurgy, Electrochemistry and Engineering, ASTM STP 801, eds., T. W. Crooker and B. N. Leis, pp. 175–196.
10.
Duquette, D. J., 1978, “Environmental Effects I. General Fatigue Resistance and Crack Nucleation in Metals and Alloys,” Fatigue and Microstructure, ASM International, pp. 335–363.
11.
Gangloff, R. P., 1985, “Inhibition of Aqueous Chlorides Corrosion Fatigue by Control of Crack Hydrogen Production,” Critical Issues in Reducing the Corrosion of Steels, eds., H. Leidheiser Jr. and S. Haruyama, JSPPS/NSF, Tokyo, Japan.
12.
Gangloff, R. P., 1990, “Corrosion Fatigue Crack Propagation in Metals,” NASA Report 4301.
13.
Gooch
T. G.
, and
Booth
G. S.
,
1979
, “
Corrosion Fatigue of Offshore Structures
,”
Metal Science
, Vol.
13
, No.
7
, pp.
402
410
.
14.
Hartt
W. H.
, and
Hooper
W. C.
,
1980
, “
Endurance Limit Enhancement of Notched 1018 Steel in Sea Water—Specimen Size and Frequency Effects
,”
Corrosion
, Vol.
36
, p.
107
107
.
15.
Hartt
W. H.
,
Culberson
C. H.
, and
Smith
S. W.
,
1984
, “
Calcareous Deposits on Metal Surfaces in Seawater-A Critical Review
,”
Corrosion
, Vol.
40
, pp.
609
618
.
16.
Hartt, W. H., and Mao, W. Y., 1985, “Growth Rate of Calcareous Deposits upon Cathodically Polarized Steel in Sea Water,” NACE Paper 317, Boston, MA, March 25–29.
17.
Havens, F. E., and Bench, D. M., 1969, “Fatigue Strength of Quenched and Tempered Carbon Steel Plates and Welded Joints in Sea Water,” Paper OTC 1046, 1969, Offshore Technology Conference, Houston, TX, May.
18.
Hooper
W. C.
, and
Hartt
W. H.
,
1978
, “
The Influence of Cathodic Polarization of Notched Structural Steel in Sea Water
,”
Corrosion Journal
, Vol.
34
, p.
320
320
.
19.
Itoh
Y.
,
Sewerage
S.
, and
Cache
H.
,
1989
, “
Prediction of Fatigue Crack Growth Rate in Welding Residual Stress Field
,”
Engineering Fracture Mechanics
, Vol.
33
, No.
3
, pp.
397
407
.
20.
Jaske, C. E., Broek, D., Slater, J. E., and Anderson, W. E., 1978, “Corrosion Fatigue of Structural Steels in Seawater and for Offshore Application,” Corrosion Fatigue Technology, ASTM STP 642, pp. 19–47.
21.
Kang
Ki J.
,
Song
J. H.
, and
Yon
Y.
,
1990
, “
Fatigue Crack Growth and Closure Behavior through a Compressive Residual Stress Field
,”
Fatigue and Fracture of Engineering Materials and Structures
, Vol.
13
,
1
, pp.
1
13
.
22.
Komai, K., 1987, “Corrosion-Fatigue Crack Growth Retardation and Enhancement in Structural Steels,” Current Research on Fatigue Cracks, eds. T. Tanaka, M. Jono, and K. Komai, Current Japanese Materials Research, Vol. I, Elsevier, New York, NY, pp. 267–289.
23.
Kunjapur
K. M.
,
Hartt
W. H.
, and
Smith
S. W.
,
1987
, “
Influence of Temperature and Exposure Time upon Calcareous Deposits
,”
Corrosion
, Vol.
43
, pp.
674
679
.
24.
Liaw, P. K., 1988, “Overview of Crack Closure at Near-Threshold Fatigue Crack Growth Levels,” Mechanics of Fatigue Crack Closure, ASTM STP 982, eds., J. C. Newman Jr. and W. Elber, ASTM, Philadelphia, PA, pp. 62–92.
25.
Link, L. R., 1988, “Fatigue Crack Growth of 5456-H116 Aluminum and HSLA-80 Weldments,” US Navy Report, DTRC/SME-88-39.
26.
Link, L. R., 1990, “Fatigue Crack Growth of Weldments,” ASTM STP 1058, ASTM, Philadelphia, PA, pp. 16–33.
27.
Luo
J. S.
,
Lee
R. U.
,
Chen
T. Y.
,
Hartt
W. H.
, and
Smith
S. W.
,
1991
, “
Formation of Calcareous Deposits under Different Modes of Cathodic Polarization
,”
Corrosion
, Vol.
47
, pp.
189
196
.
28.
Maahn, E., 1986, “Crack Tip Chemistry under Cathodic Protection and its Influence on Fatigue Crack Growth,” CANMET, Energy, Mines and Resources Canada, 555 Booth St., Ottawa, Canada, K1A 0G1.
29.
Marcus, H. C., 1978, “Environmental Effects II. Fatigue Crack Growth in Metals and Alloys,” Fatigue and Microstructure, ASM International, pp. 365–383.
30.
Marsh, K. J., Martin, T., and McGregor, J., 1975, “The Effect of Random Loading and Corrosive Environment on the Fatigue Strength of Fillet-Welded Lap Joints,” NEL Report 587, National Engineering Laboratory, East Kilbride, Glasgow, Feb.
31.
Newman Jr., J. C., and Elber, W., 1988, “Mechanics of Fatigue Crack Closure,” ASTM STP 982, ASTM, Philadelphia, PA.
32.
Nordmark, G. E., Muller, L. N., and Kelsey, R. A., 1982, “Effect of Residual Stresses on Fatigue Crack Growth Rates in Weldments of Aluminum Alloy 5456 Plate,” Residual Stress Effects in Fatigue, ASTM STP 776, ASTM, Vol. 44.
33.
Rajpathak
S. S.
, and
Hartt
W. H.
,
1987
, “
Formation of Calcareous Deposits within Simulated Fatigue Cracks in Seawater
,”
Corrosion
, Vol.
43
, pp.
339
47
.
34.
Reynolds, G. H., and Todd, J. A., 1989, “Threshold Corrosion Fatigue of Welded Shipbuilding Steels, Final Report-Phases I Program,” US Navy Report, Contract No. N00024-88-C-5708.
35.
Ritchie
R. O.
,
1979
, “
Near-Threshold Fatigue Crack Propagation in Steels
,”
International Metals Reviews
, Vols.
5 and 6
, pp.
205
230
.
36.
Sablok, A. K., and Hartt, W. H., 1990, “Fatigue of Welded Structural and High-Strength Steel Plate Specimens in Seawater,” Fatigue and Fracture Testing of Weldments, eds., H. I. Mchenry and J. M. Potter, ASTM STP 1058, ASTM, Philadelphia, PA, pp. 78–95.
37.
Shi
Y. W.
,
Chen
B. Y.
, and
Zhang
J. X.
,
1990
, “
Effects of Welding Residual Stresses on Fatigue Crack Growth Behavior in Butt Welds of a Pipeline Steel
,”
Engineering Fracture Mechanics
, Vol.
36
, No.
6
, pp.
893
902
.
38.
Spies
H.-J.
,
Punch
G.
,
Henkel
C.
, and
Roessler
K.
,
1989
, “
Fatigue Crack Propagation in High Strength Low Alloy Steels
,”
Theoretical and Applied Fracture Mechanics
, Vol.
11
, No.
2
, pp.
121
5
.
39.
Staehle, R. W., 1977, “A Point of View Concerning Mechanisms of Environment Sensitive Cracking of Engineering Materials,” Mechanisms of Environment Sensitive Cracking of Materials, eds., P. R. Swann, F. P. Ford, and A. R. C. Westwood, pp. 574–601.
40.
Suresh
S.
,
Zamiski
G. F.
, and
Ritchie
R. O.
,
1981
, “
Oxide Induced Crack Closure: An Explanation for Near-Threshold Corrosion Fatigue Crack Growth Behavior
,”
Metall. Trans. A
, Vol.
12A
, p.
1435
1435
.
41.
Tanaka, T., Jono, M., and Komai, K., 1987, “Current Research on Fatigue Cracks,” Current Japanese Materials Research, Vol. I, Elsevier, New York, NY.
42.
Todd
J. A.
,
Li
P.
,
Liu
G.
, and
Raman
V.
,
1988
, “
A New Mechanism of Crack Closure in Cathodically Protected ASTM A710 Steel
,”
Scripta Metall.
, Vol.
22
, pp.
745
50
.
43.
Todd
J. A.
,
Chen
L.
,
Yankov
E. Y.
, and
Tao
H.
,
1993
, “
A Comparison of the Near-Threshold Corrosion Fatigue Crack Propagation Rates in Mil S-24645 HSLA Steel and its Weld Metal
,”
ASME Journal of Offshore Mechanics and Arctic Engineering
, Vol.
115
, pp.
131
136
.
44.
Tubby, P. T., and Booth, G. S., 1992, “Corrosion Fatigue Crack Growth Rate Studies in Two Weldable Steels,” Proceedings, 11th International Conference on Offshore Mechanics and Arctic Engineering, Vol. III: Materials Engineering, eds., M. M. Salama, G. S. Booth, E. A. Patterson, J. V. Haskell, and A. Stacey, Calgary, Alberta, Canada, pp. 539–549.
45.
Turnbull
A.
,
1982
, “
A Theoretical Evaluation of the Influence of Mechanical Variables on the Concentration of Oxygen in a Corrosion Fatigue Crack
,”
Corrosion Science
, Vol.
22
, pp.
877
893
.
46.
Turnbull
A.
, and
Ferriss
D. H.
,
1986
, “
Mathematical Modelling of the Electrochemistry in Corrosion Fatigue Cracks in Structure Steel Cathodically Protected in Sea Water
,”
Corrosion Science
, Vol.
26
, pp.
601
628
.
47.
Turnbull
A.
, and
Ferriss
D. H.
,
1987
, “
Mathematical Modelling of the Electrochemistry in Corrosion Fatigue Cracks in Steel Corroding in Marine Environments
,”
Corrosion Science
, Vol.
27
, pp.
1323
1250
.
48.
Underwood, J. H., Pook, L. P., and Sharpies, J. K., 1977, “Fatigue-Crack Propagation Through a Measured Residual Stress Field in Alloy Steel,” Flaw Growth and Fracture, ASTM STP 631, pp. 402–415.
49.
Walter, J. C., Olbjorn, E., Allstad, O., and Elde, G., 1976, “Safety Against Corrosion Fatigue Offshore,” Publication No. 94;, Det Norske Veritas, Horik, Norway, Apr.
50.
Wei, R. P., and Gangloff, R. P., 1989, “Fracture Mechanics; Perspectives and Directions,” ASTM STP 1020, ASTM, Philadelphia, PA.
51.
Wolfson
S. L.
, and
Hartt
W. H.
,
1981
, “
An Initial Investigation of Calcareous Deposits upon Cathodic Steel Surfaces in Sea Water
,”
Corrosion
, Vol.
37
, pp.
70
76
.
This content is only available via PDF.
You do not currently have access to this content.