Cleavage fracture toughness values for A533-B reactor pressure vessel (RPV) steel at -40°C obtained from test programs at Oak Ridge National Laboratory (ORNL) and University of Kansas (KU) are interpreted using the J-A2 analytical model. The KU test data are from smaller SENB specimens with a/w = 0.1 and 0.5. The ORNL test data are from 1) larger SENB specimens with a/w = 0.1 and 0.5, and 2) a six-point-bend cruciform specimen under either uniaxial or bi-axial loads. The analytical model is based on the critical stress criterion and takes into consideration the constraint effect using the second parameter A2 in addition to the generally accepted loading parameter J. It is demonstrated that the effects of crack depth (shallow versus deep), specimen size (small versus large), and loading type (uniaxial versus biaxial) on the fracture toughness from the test programs can be interpreted and predicted.

1.
Aurich, D., Brocks, W., Jordan, R., Olschewski, J., Veith, H., and Ziebs, J., 1983, “The Influence of Multiaxial Stress States on Characteristic Parameters for Cleavage Fracture in the Elastic-Plastic Range,” Proceedings of the International Conference on Application of Fracture Mechanics to Materials and Structures, Freiburg, Germany, pp. 345–356.
2.
Bass, B. R., Bryson, J. W., Theiss, T. J., and Rao, M. C., 1994, “Biaxial Loading and Shallow-Flaw Effects on Crack-Tip Constraint and Fracture Toughness,” NUREG/CR-6132, ORNL/TM-12498, Oak Ridge National Laboratory.
3.
Chao
Y. J.
,
Yang
S.
, and
Sutton
M. A.
,
1994
, “
On the Fracture of Solids Characterized by One or Two Parameters: Theory and Practice
,”
Journal of Mechanics and Physics of Solids
, Vol.
42(4)
, pp.
629
647
.
4.
Chao, Y. J., and Ji, W., 1995, “Cleavage Fracture Quantified by J and A2,” Constraint Effects in Fracture: Theory and Applications—Second Volume, ASTM STP 1244, eds., M. Kirk and A. Bakker, American Society for Testing and Materials, Philadelphia, PA, pp. 3–20.
5.
Chao, Y. J., and Zhang, X., 1996, “Constraint Effect in Brittle Fracture,” Fatigue and Fracture Mechanics: 27th Volume, ASTM STP 1296, eds., R. S. Piasik, J. C. Newman, Jr., and N. E. Dowling, American Society for Testing and Materials, Philadelphia, PA.
6.
Garwood
S. J.
,
1991
, “
The Significance of Biaxial Loading on the Fracture Performance of a Pressure Vessel Steel
,” Pressure Vessel Integrity—1991,
ASME PVP
-Vol.
213
, pp.
113
124
.
7.
Gordon, J. R., and Wang, Y. Y., 1992, “An International Research Project to Develop Shallow Crack Fracture Mechanics Tests,” EWI Report J6098-23-92.
8.
Hibbit, Karlson, and Sorensen, 1994, ABAQUS User’s Manual, Version 5.3.
9.
Hutchinson
J. W.
,
1968
a, “
Singular Behavior at the End of a Tensile Crack in a Hardening Material
,”
Journal of the Mechanics and Physics of Solids
, Vol.
16
, p.
337
337
.
10.
Hutchinson
J. W.
,
1968
b, “
Plastic Stress and Strain Fields at a Crack Tip
,”
Journal of the Mechanics and Physics of Solids
, Vol.
16
, p.
13
13
.
11.
Li
Y.
, and
Wang
Z.
,
1986
, “
Higher Order Asymptotic Field of Tensile Plane Strain Nonlinear Crack Problems
,”
Scientia Sinica (Series A)
Vol.,
29
, pp.
941
955
.
12.
Nikishkov
G. P.
,
Bru¨ckner-Foit
and
Munz
D.
,
1995
a, “
Calculation of the Second Fracture Parameter for Finite Cracked Bodies with the Use of the Three-term Elastic-plastic Asymptotic Expansion
,”
Engineering Fracture Mechanics
, Vol.
52(4)
, pp.
685
701
.
13.
Nikishkov
G. P.
,
Bru¨ckner-Foit
, and
Munz
D.
,
1995
b, “
Application of the Three-Term Elastic-Plastic Asymptotic Expansion for the Characterization of Stress Fields Near the Front of a Semi-Elliptical Crack
,”
International Journal of Fracture
, Vol.
70
, pp.
R91–R97
R91–R97
.
14.
O’Dowd
N. P.
, and
Shih
C. F.
,
1991
a, “
Family of Crack-Tip Fields Characterized by a Triaxiality Parameter—I. Structure of Fields
,”
Journal of the Mechanics and Physics of Solids
, Vol.
39
, pp.
989
1015
.
15.
O’Dowd
N. P.
, and
Shih
C. F.
,
1991
b, “
Family of Crack-Tip Fields Characterized by a Triaxiality Parameter—II. Fracture Applications
,”
Journal of the Mechanics and Physics of Solids
, Vol.
40
, p.
939
939
.
16.
O’Dowd, N. P., and Shih, C. F., 1992, “Two Parameter Fracture Mechanics: Theory and Applications,” ASTM STP National Fracture Symposium on Fracture Mechanics, Gatlinburg, TN, June 29–July 3.
17.
Olschewski, J., Jordan, R., Brocks, W., Veith, H., and Ziebs, J., Aurich, D., 1983, “The Influence of Biaxial Loading on Fracture Toughness—Further Results,” Transactions of the 7th International Conference on Structural Mechanics in Reactor Technology, Chicago, IL, pp. 225–232.
18.
Rice
J. R.
, and
Rosengren
G. F.
,
1968
, “
Plane Strain Deformation Near a Crack Tip in a Power Law Hardening Material
,”
Journal of the Mechanics and Physics of Solids
, Vol.
16
, pp.
1
12
.
19.
Ritchie
R. O.
,
Knott
J. F.
, and
Rice
J. R.
,
1973
, “
On the Relationship Between Tensile Stress and Fracture Toughness in Mild Steel
,”
Journal of the Mechanics and Physics of Solids
, Vol.
21
, pp.
395
410
.
20.
Ritchie
R. O.
,
Server
W. L.
, and
Wullaert
R. A.
,
1979
, “
Critical Fracture Stress and Fracture Strain Models for the Prediction of Lower and Upper Shelf Toughness in Nuclear Pressure Vessel Steels
,”
Metallurgy Transaction
, Vol.
10A
, p.
1557
1557
.
21.
Rudland, D. L., Mohan, R., Ghadiali, N. D., Detty, D., Rosenfield, A. R., and Wilkowski, M., 1995, “The Effect of Constraint Due to Out-of-Plane Stress Field on Fracture of Reactor Pressure Vessel Steel—An Experimental and Numerical Study,” Constraint Effects in Fracture: Theory and Applications—Second Volume, ASTM STP 1244, eds., M. Kirk and A. Bakker, American Society for Testing and Materials, Philadelphia, PA, pp. 316–343.
22.
Sharma
S. M.
, and
Aravas
N.
,
1991
, “
Determination of Higher-Order Terms in Asymptotic Elastoplastic Crack Tip Solutions
,”
Journal of Mechanics and Physics of Solids
, Vol.
39
, pp.
1043
1072
.
23.
Shih, C. F., 1983, “Tables of Hutchinson-Rice-Rosengren Singular Field Quantities,” Brown University Report, MRL E-147.
24.
Smith
J. A.
, and
Rolfe
S. T.
,
1994
a, “
The Effect of Crack Depth (a) and Crack Depth to Width Ratio (a/w) on the Fracture Toughness of A533-B Steel
,”
ASME JOURNAL OF PRESSURE VESSEL TECHNOLOGY
, Vol.
116
, pp.
115
121
.
25.
Smith, J. A., and Rolfe, S. T., 1994b, private communication.
26.
Sumpter, J. D. G., and Forbes, A. T., 1992, “Constraint Based Analysis of Shallow Cracks in Mild Steel,” Proceedings of the TWI/EWI/IS International Conference on Shallow Crack Fracture Mechanics, Toughness Tests and Applications, ed., M. G. Dawes, Cambridge, U.K.
27.
Theiss, T. J., Shum, D. K., and Rolfe, S. T., 1992, “Experimental and Analytical Investigation of the Shallow-Flaw Effects in Reactor Pressure Vessels,” NUREG/CR-5886, ORNL/TM-12115, Oak Ridge National Laboratory.
28.
Wallin, K., 1993, “Statistical Aspects of Constraint with Emphasis to Testing and Analysis of Laboratory Specimens in the Transition Region,” Constraint Effect in Fracture, ASTM STP 1171, eds., E. M. Hackett, K.-H. Schwalbe, and R. H. Dodds, Jr., pp. 264–288.
29.
Wang, Y. Y., 1991, “A Two-Parameter Characterization of Elastic-Plastic Crack Tip Fields and Application to Cleavage Fracture,” Ph.D. thesis, Department of Mechanical Engineering, MIT, Cambridge, MA.
30.
Whorley, R. A., and Rolfe, S. T., 1992, “The Significance of the a/w Ratio on Fracture Toughness of A36 Steel,” WRC Bulletin No. 375.
31.
Wullaert
R. A.
, and
Server
W. L.
,
1980
, “
Small Specimen Predictions of Fracture Toughness for Nuclear Pressure Vessel Steels
,”
Nuclear Engineering and Design
, Vol.
57
, pp.
153
173
.
32.
Xia
L.
,
Wang
T. C.
, and
Shih
C. F.
,
1993
, “
Higher Order Analysis of Crack Tip Fields in Elastic-Power Law Hardening Materials
,”
Journal of Mechanics and Physics of Solids
, Vol.
41
, pp.
665
687
.
33.
Yang
S.
,
Chao
Y. J.
, and
Sutton
M. A.
,
1993
a, “
Higher Order Asymptotic Crack Tip Fields in a Power-Law Hardening Material
,”
Engineering Fracture Mechanics
, Vol.
45(1)
, pp.
1
20
.
34.
Yang
S.
,
Chao
Y. J.
, and
Sutton
M. A.
,
1993
b, “
Complete Theoretical Analysis for Higher Order Asymptotic Terms and the HRR Zone at a Crack Tip for Mode I and Mode II Loading of a Hardening Material
,”
Acta Mechanica
, Vol.
98
, pp.
79
98
.
This content is only available via PDF.
You do not currently have access to this content.