In this study, stress intensity factors for axial cracks in hollow cylinders subjected to thermal shock are determined by using the thermal weight function method. The thermal weight function is a universal function for a given cracked body and can be obtained from any arbitrary mechanical loading system. The thermal weight function may be thought of as Green’s function for the stress intensity factor of cracked bodies subject to thermal loadings. Once the thermal weight function for a cracked body is determined, the stress intensity factor for any arbitrary distributed thermal loading can be simply and efficiently evaluated through the integration of the product of the temperature and the correspondent thermal weight function. A numerical boundary element method for the determination of thermal weight functions for axial cracks in hollow cylinders is used in this study to evaluate the transient stress intensity factor. As a demonstration, some examples of axial cracks in hollow cylinders subjected to thermal shock are solved by using the thermal weight function method, and the results are compared with available results in the published literature.

1.
Bahr
H.-A.
, and
Balke
H.
,
1987
, “
Fracture Analysis of a Single Edge Cracked Strip under Thermal Shock
,”
Theoretical and Applied Fracture Mechanics
, Vol.
8
, pp.
33
39
.
2.
Bueckner
H. F.
,
1970
, “
A Novel Principle for the Computation of Stress Intensity Factors
,”
ZAMM
, Vol.
50
, pp.
529
546
.
3.
Carslaw, H. S., and Jaeger, J. C., 1950, Conduction of Heat in Solids, Oxford University Press, Oxford, U.K.
4.
Emery
A. F.
,
Walker
G. E.
, and
Williams
J. A.
,
1969
, “
A Green Function for the Stress Intensity Factors of Edge Cracks and Its Application to Thermal Stress
,”
ASME Journal of Applied Mechanics
, Vol.
36
, pp.
618
624
.
5.
Florence
A. L.
, and
Goodier
J. N.
,
1960
, “
Thermal Stresses Due to Disturbance of Uniform Heat Flow by an Insulated Ovaloid Hole
,”
ASME Journal of Applied Mechanics
, Vol.
27
, pp.
635
639
.
6.
Florence
A. L.
, and
Goodier
J. N.
,
1963
, “
The Linearly Thermoelastic Problem of Uniform Heat Flow Disturbed by a Penny-Shaped Crack
,”
International Journal of Engineering Science
, Vol.
1
, pp.
533
540
.
7.
Gregory
R. D.
,
1977
, “
A Circular Disc Containing a Radial Edge Crack Opened by a Constant Internal Pressure
,”
Mathematical Procedures of Camb. Philosophical Society
, Vol.
81
, pp.
497
521
.
8.
Gregory
R. D.
,
1979
, “
The Edge-Cracked Circular Disc under Symmetric Pin-Loading
,”
Mathematical Procedures of Camb. Philosophical Society
, Vol.
85
, pp.
523
538
.
9.
Gregory
R. D.
,
1989
, “
The Spinning Circular Disc with a Radial Edge Crack: An Exact Solution
,”
International Journal of Fracture
, Vol.
41
, pp.
39
50
.
10.
Hellen
T. K.
,
1975
, “
On the Method of Virtual Crack Extensions
,”
International Journal of Numerical Methods in Engineering
, Vol.
9
, pp.
187
207
.
11.
Hellen
T. K.
, and
Cesari
F.
,
1979
, “
On the Solution of the Center Cracked Plate with a Quadratic Thermal Gradient
,”
Engineering Fracture Mechanics
, Vol.
12
, pp.
469
478
.
12.
Kassir
M. K.
, and
Sih
G. C.
,
1968
, “
Thermal Stress in a Solid Weakened by an External Circular Crack
,”
International Journal of Solids and Structures
, Vol.
5
, pp.
351
367
.
13.
Kassir
M. K.
, and
Bregman
A. M.
,
1971
, “
Thermal Stress in a Solid Containing Parallel Circular Crack
,”
Applied Scientific Research
, Vol.
25
, pp.
262
280
.
14.
Ma
C. C.
,
Chang
Z.
, and
Tsai
C. H.
,
1990
, “
Weight Functions of Oblique Edge and Center Cracks in Finite Bodies
,”
Engineering Fracture Mechanics
, Vol.
36
, pp.
267
285
.
15.
Ma
C. C.
,
Huang
J. I.
, and
Tsai
C. H.
,
1994
, “
Weight Functions and Stress Intensity Factors for Axial Cracks in Hollow Cylinders
,”
ASME JOURNAL OF PRESSURE VESSEL TECHNOLOGY
, Vol.
116
, pp.
423
430
.
16.
Nied
H. F.
,
1983
, “
Thermal Shock Fracture in an Edge-Cracked Plate
,”
Journal of Thermal Stress
, Vol.
6
, pp.
217
229
.
17.
Olesiak
Z.
, and
Sneddon
I. N.
,
1959
, “
The Distribution of Thermal Stress in an Infinite Elastic Solid Containing a Penny-Shaped Crack
,”
Archives of Rational Mechanics Analysis
, Vol.
4
, pp.
238
254
.
18.
Oliveira
R.
, and
Wu
X. R.
,
1987
, “
Stress Intensity Factor for Axial Cracks in Hollow Cylinders Subjected to Thermal Shock
,”
Engineering Fracture Mechanics
, Vol.
27
, pp.
185
197
.
19.
Parks
D. M.
,
1974
, “
A Stiffness Derivative Finite Element Technique for Determination of Crack Tip Stress Intensity Factors
,”
International Journal of Fracture
, Vol.
10
, pp.
487
501
.
20.
Rice
J. R.
,
1972
, “
Some Remarks on Elastic Crack-Tip Stress Field
,”
International Journal of Solids and Structures
, Vol.
8
, pp.
751
758
.
21.
Rooke, D. P., and Cartwright, D. J., 1976, Compendium of Stress Intensity Factors, Her Majesty’s Stationery Office, London, U.K.
22.
Saillard
P.
,
Devaux
J. C.
, and
Pellissier-Tanon
A.
,
1987
, “
Numerical Prediction of the Fracture of a Thick Pressurized Shell Subjected to a Liquid Nitrogen Shock
,”
Nuclear Engineering and Design
, Vol.
105
, pp.
83
88
.
23.
Sha
G. T.
,
1984
, “
Stiffness Derivative Finite Element Technique to Determine Nodal Weight Functions with Singularity Elements
,”
Engineering Fracture Mechanics
, Vol.
19
, pp.
685
699
.
24.
Sha
G. T.
, and
Yang
C. T.
,
1985
, “
Weight Function Calculations for Mixed-Mode Fracture Problems with the Virtual Crack Extension Technique
,”
Engineering Fracture Mechanics
, Vol.
21
, pp.
1119
1149
.
25.
Sih
G. C.
,
1962
, “
On the Singular Character of Thermal Stress Near a Crack Tip
,”
ASME Journal of Applied Mechanics
, Vol.
29
, pp.
587
589
.
26.
Sih, G. C., 1973, Handbook of Stress Intensity Factors, Institute of Fracture and Solid Mechanics, Lehigh University, PA.
27.
Tada, H., Paris, P. C., and Irwin, G. R., 1973, The Stress Analysis of Cracks Handbook, Del Research Corporation, Hellertown, PA.
28.
Tsai
C. H.
, and
Ma
C. C.
,
1989
, “
Weight Functions for Cracks in Finite Rectangular Plates
,”
International Journal of Fracture
, Vol.
40
, pp.
43
63
.
29.
Tsai
C. H.
, and
Ma
C. C.
,
1992
, “
Thermal Weight Function of Cracked Bodies Subjected to Thermal Loading
,”
Engineering Fracture Mechanics
, Vol.
41
, pp.
27
40
.
30.
Wilson
W. K.
, and
Yu
I. W.
,
1979
, “
The Use of the J-Integral in Thermal Stress Crack Problems
,”
International Journal of Fracture
, Vol.
15
, pp.
377
387
.
31.
Wu
X. R.
,
1991
, “
The Arbitrarily Loaded Single-Edge Cracked Circular Disc Accurate Weight Function Solutions
,”
International Journal of Fracture
, Vol.
49
, pp.
239
256
.
This content is only available via PDF.
You do not currently have access to this content.