A viscoplastic theory is developed that reduces to creep theory analytically under steady-state conditions. A fairly simple model is constructed from this theoretical framework by defining material functions that have close ties to the physics of inelasticity; consequently, the model is characterized easily. The computational characteristics of the model are enhanced, in general, by converting the kinetics equation from a hyperbolic relationship to a power-law relationship. The resulting model is applied to copper and to the copper alloy, NARloy Z.

This content is only available via PDF.
You do not currently have access to this content.