In the present work, analytical and experimental investigations were performed on creep buckling. Special attention was focussed on bifurcation behavior during creep deformation. The finite element method was used to analyze creep buckling of circular cylindrical shells without initial imperfection. The number of circumferential waves obtained from the analyses agrees well with those of the experiments. The present experimental investigation shows that the circumferential waves are suddenly caused near a bulge. It is also found that there is no correlation between the wavelength of the circumferential waves observed at creep buckling and that of the circumferential initial imperfection. Deformation patterns at the bifurcation creep buckling obtained from the analyses are analogous to those of the experiments. It is concluded from the analyses and the experiments that the circumferential waves observed in creep buckling experiments are due to bifurcation buckling during creep deformation.

This content is only available via PDF.
You do not currently have access to this content.