A finite element model is presented for the seismic response of liquid-filled tanks. This type of analysis is complicated for unanchored tanks, because the bases of these tanks separate from their foundations during strong ground motion. This changes the dynamic behavior of these structures considerably and may result in severe loading. The analysis starts by geometrically discretizing the shell structure using cylindrical finite elements. Then, application of Hamilton’s principle in the structural domain yields the equations of motion for the coupled fluid/structure system. The foregoing analytical procedure employs the closed-form solution for the hydrodynamic response problem, resulting in a compact system of equations of motion. Primary attention is paid to the formulation of the nonlinear base uplift problem. Effects due to shell and ground flexibility are also included.

This content is only available via PDF.
You do not currently have access to this content.