Dynamic transients such as steam hammer or water hammer in power plant or process piping can generate high destructive reactions if rigid restraints or snubbers are used in an attempt to exert total control of pipe response. However, where some movement can be tolerated, adequate control can be maintained with much lower resulting loads in the restraining structures and components. The disk spring restraint has been demonstrated to be a practical device for controlling piping movements caused by typical dynamic upset conditions in steam and boiler feedwater piping and in drain lines carrying mixed phase (water and vapor) flow. This paper discusses the simplified mathematics used in estimating loads to design disk spring restraints for such applications.

This content is only available via PDF.
You do not currently have access to this content.